
MATLAB® Compiler™ 4
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Compiler™ User’s Guide

© COPYRIGHT 1995–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)
September 2000 Fifth printing Revised for Version 2.1 (Release 12)
October 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
August 2004 Online only Revised for Version 4.0.1 (Release 14+)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
November 2004 Online only Revised for Version 4.1.1 (Release 14SP1+)
March 2005 Online only Revised for Version 4.2 (Release 14SP2)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)
September 2006 Online only Revised for Version 4.5 (Release 2006b)
March 2007 Online only Revised for Version 4.6 (Release 2007a)
September 2007 Seventh printing Revised for Version 4.7 (Release 2007b)
March 2008 Online only Revised for Version 4.8 (Release 2008a)
October 2008 Online only Revised for Version 4.9 (Release 2008b)
March 2009 Online only Revised for Version 4.10 (Release 2009a)
September 2009 Online only Revised for Version 4.11 (Release 2009b)

Contents

Getting Started

1
Product Overview . 1-2
What Does This Product Do? . 1-2
When To Use MATLAB® Compiler 1-2
When Not To Use MATLAB® Compiler 1-3
How Do I Use This Product? . 1-4
How Does This Product Work? . 1-4
What Is The MATLAB Compiler Runtime (MCR)? 1-5

Before You Use MATLAB® Compiler 1-6
Understand Your Role in the Application Deployment
Process . 1-6

Verify Your Knowledge Base . 1-8
Install Required Products . 1-9
Select Your C or C++ Compiler with mbuild -setup 1-9

Deploying with the Magic Square Example 1-10
About This Example . 1-10
Magic Square Example: MATLAB Programmer Tasks . . . 1-11
Magic Square Example: C/C++ Programmer Tasks 1-16

For More Information . 1-20

Installation and Configuration

2
Requirements . 2-2
System Requirements . 2-2
Supported Third-Party Compilers . 2-2

Installation . 2-4

v

Installing MATLAB® Compiler . 2-4
Installing an ANSI C or C++ Compiler 2-5

Configuration . 2-7
About the mbuild Utility . 2-7
Configuring an ANSI C or C++ Compiler 2-7

Supported Compiler Restrictions 2-11

Options Files . 2-12
Locating the Options File . 2-12
Changing the Options File . 2-13

Compilation Process

3
Overview of MATLAB® Compiler Technology 3-2
MATLAB® Compiler Runtime . 3-2
Component Technology File . 3-2
Build Process . 3-3

Input and Output Files . 3-6
Standalone Executable . 3-6
C Shared Library . 3-7
C++ Shared Library . 3-9
Macintosh 64 (Maci64) . 3-11

Working with MATLAB Data Files Using Load and
Save . 3-12
Example: Using Load/Save Functions To Process MATLAB
Data for Deployed Applications . 3-12

vi Contents

Deployment Process

4
Overview . 4-2

Deploying to Programmers . 4-3
Steps by the Programmer to Deploy to Programmers 4-3
What Software Does a Programmer Need? 4-4
Ensuring Memory for Deployed Applications 4-8

Deploying to End Users . 4-9
Steps by the Programmer to Deploy to End Users 4-9
What Software Does the End User Need? 4-13
Using Relative Paths with Project Files 4-16
Porting Generated Code to a Different Platform 4-16
Extracting a CTF Archive Without Executing the
Component . 4-17

Dependency Analysis Function (depfun) and User
Interaction with the Compilation Path 4-17

Ensuring Memory for Deployed Applications 4-20

Working with the MCR . 4-21
Understanding the MCR . 4-21
Installing the MCR and MATLAB on the Same Machine . . 4-22
Installing Multiple MCRs on One Machine 4-24
Retrieving MCR Attributes . 4-24
Improving Data Access Using the MCR User Data
Interface . 4-26

Displaying MCR Initialization Start-Up and Completion
Messages For Users . 4-33

Deploying a Standalone Application on a Network
Drive . 4-35

MATLAB® Compiler Deployment Messages 4-36

Using MATLAB® Compiler Generated DLLs in Windows
Services . 4-37

vii

Reserving Memory for Deployed Applications with
MATLAB Memory Shielding . 4-38
What Is MATLAB Memory Shielding and When Should You
Use It? . 4-38

Requirements for Using MATLAB Memory Shielding 4-39
Invoking MATLAB Memory Shielding for Your Deployed
Application . 4-39

Compiler Commands

5
Command Overview . 5-2
Compiler Options . 5-2
Combining Options . 5-2
Conflicting Options on the Command Line 5-3
Using File Extensions . 5-3

Using Macros to Simplify Compilation 5-5
Macro Options . 5-5
Working With Macro Options . 5-5

Using Path Names . 5-8

Using Bundle Files . 5-9

Using Wrapper Files . 5-11
What Are Wrapper Files? . 5-11
Main File Wrapper . 5-11
C Library Wrapper . 5-12
C++ Library Wrapper . 5-13

Interfacing M-Code to C/C++ Code 5-14
Overview . 5-14
Code Proper Return Types From C and C++ Methods 5-14
C Example . 5-14
C++ Example . 5-16

viii Contents

Overriding Default CTF Archive Embedding Using the
MCR Component Cache . 5-20

Using Pragmas . 5-22
Using feval . 5-22
Example: Using %#function . 5-22

Using mxArray . 5-24

Script Files . 5-25
Converting Script M-Files to Function M-Files 5-25
Including Script Files in Deployed Applications 5-26

Compiler Tips . 5-27
Calling Built-In Functions from C or C++ 5-27
Calling a Function from the Command Line 5-28
Using MAT-Files in Deployed Applications 5-28
Compiling a GUI That Contains an ActiveX Control 5-28
Debugging MATLAB® Compiler Generated Executables . . 5-29
Deploying Applications That Call the Java Native
Libraries . 5-29

Locating .fig Files in Deployed Applications 5-29
Blocking Execution of a Console Application That Creates
Figures and Terminating Figures by Force 5-30

Passing Arguments to and from a Standalone
Application . 5-31

Using Graphical Applications in Shared Library Targets . . 5-33
Using the VER Function in a Compiled MATLAB
Application . 5-33

Standalone Applications

6
Introduction . 6-2

C Standalone Application Target . 6-3
Compiling the Application . 6-3
Testing the Application . 6-3

ix

Deploying the Application . 6-4
Running the Application . 6-6

Coding with M-Files Only . 6-8
M-File Advantages . 6-8
Example . 6-8

Mixing M-Files and C or C++ . 6-10
Examples Overview . 6-10
Simple Example . 6-10
Advanced C Example . 6-15

Libraries

7
Introduction . 7-2

Addressing mwArrays Above the 2 GB Limit 7-3

C Shared Library Target . 7-4
C Shared Library Wrapper . 7-4
C Shared Library Example . 7-4
Calling a Shared Library . 7-11

C++ Shared Library Target . 7-18
C++ Shared Library Wrapper . 7-18
C++ Shared Library Example . 7-18

MATLAB® Compiler Generated Interface Functions . . 7-24
Functions in the Shared Library . 7-24
Type of Application . 7-24
Structure of Programs That Call Shared Libraries 7-26
Library Initialization and Termination Functions 7-27
Print and Error Handling Functions 7-28
Functions Generated from M-Files 7-30
Retrieving MCR State Information While Using Shared
Libraries . 7-33

x Contents

Using C/C++ Shared Libraries on a Mac OS X System . . 7-34

About Memory Management and Cleanup 7-38
Overview . 7-38
Passing mxArrays to Shared Libraries 7-38

Troubleshooting

8
Introduction . 8-2

Common Issues . 8-3

Failure Points and Possible Solutions 8-4
How to Use this Section . 8-4
Does the Failure Occur During Compilation? 8-4
Does the Failure Occur When Testing Your Application? . . 8-8
Does the Failure Occur When Deploying the Application to
End Users? . 8-11

mbuild . 8-14

MATLAB® Compiler . 8-16

Deployed Applications . 8-20

Limitations and Restrictions

9
Limitations About What May Be Compiled 9-2
Compiling MATLAB and Toolboxes 9-2
Fixing Callback Problems: Missing Functions 9-3
Finding Missing Functions in an M-File 9-5
Suppressing Warnings on the UNIX System 9-5

xi

Cannot Use Graphics with the -nojvm Option 9-6
Cannot Create the Output File . 9-6
No M-File Help for Compiled Functions 9-6
No MCR Versioning on Mac OS X . 9-6
Older Neural Networks Not Deployable with MATLAB®

Compiler . 9-7
Restrictions on Calling PRINTDLG with Multiple
Arguments in Compiled Mode . 9-7

Compiling a Function with WHICH Does Not Search
Current Working Directory . 9-8

Unsupported Functions . 9-9

Reference Information

10
Directories Required for Development and Testing . . . 10-2
Overview . 10-2
Path for Java Development on All Platforms 10-2
Path Modifications Required for Accessibility 10-2
Windows Settings for Development and Testing 10-3
UNIX Settings for Development and Testing 10-3

Directories Required for Run-Time Deployment 10-5
General Path Guidelines . 10-5
Path for Java Applications on All Platforms 10-5
Windows Path for Run-Time Deployment 10-5
UNIX Paths for Run-Time Deployment 10-6

MATLAB® Compiler Licensing . 10-8
Using MATLAB® Compiler Licenses for Development 10-8

Using MCR Installer Command Line Options 10-9
Overview . 10-9
Displaying MCR Installer Location and Related
Information . 10-9

Accessing MCR Installer Command Line Options on
Windows Systems . 10-10

xii Contents

Accessing MCR Installer Command Line Options on UNIX
and Linux Systems . 10-12

Function Reference

11
Pragmas . 11-2

Command-Line Tools . 11-2

API Functions . 11-3

Functions — Alphabetical List

12

MATLAB® Compiler Quick Reference

A
Common Uses of MATLAB® Compiler A-2
Create a Standalone Application . A-2
Create a Library . A-2

mcc . A-4

Error and Warning Messages

B
About Error and Warning Messages B-2

xiii

Compile-Time Errors . B-3

Warning Messages . B-6

depfun Errors . B-9
About depfun Errors . B-9
MCR/Dispatcher Errors . B-9
XML Parser Errors . B-9
depfun-Produced Errors . B-10

C++ Utility Library Reference

C
Primitive Types . C-2

Utility Classes . C-3

mwString Class . C-4
About mwString . C-4
Constructors . C-4
Methods . C-4
Operators . C-4

mwException Class . C-20
About mwException . C-20
Constructors . C-20
Methods . C-20
Operators . C-20

mwException Class Functions . C-21

mwArray Class . C-29
About mwArray . C-29
Constructors . C-29
Methods . C-30
Operators . C-31
Static Methods . C-32

xiv Contents

mwArray Class Functions . C-33

Index

xv

xvi Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Before You Use MATLAB® Compiler” on page 1-6

• “Deploying with the Magic Square Example” on page 1-10

• “For More Information” on page 1-20

1 Getting Started

Product Overview

In this section...

“What Does This Product Do?” on page 1-2

“When To Use MATLAB® Compiler” on page 1-2

“When Not To Use MATLAB® Compiler” on page 1-3

“How Do I Use This Product?” on page 1-4

“How Does This Product Work?” on page 1-4

“What Is The MATLAB Compiler Runtime (MCR)?” on page 1-5

What Does This Product Do?
MATLAB® Compiler™ compiles a MATLAB® application into a standalone
application or software component. The act of compiling this code is
sometimes referred to as building.

Building with MATLAB Compiler enables you to run your MATLAB
application outside the MATLAB environment. It reduces application
development time by eliminating the need to translate your code into a
different language. If you are building a standalone application, MATLAB
Compiler produces an executable for your end users. If you integrate into C or
C++, MATLAB Compiler provides an interface to use your code as a shared
library. If you integrate into other development languages, MATLAB builder
products (available separately) let you package your MATLAB applications as
software components. You are able to use Java classes, .NET components,
or Microsoft® Excel® add-ins.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

When To Use MATLAB Compiler
Use MATLAB Compiler to:

• Deploy C or C++ code that interfaces with MATLAB

1-2

Product Overview

• Package MATLAB® applications as executables and shared libraries

• Distribute royalty-free, standalone executables and software components

• Incorporate MATLAB-based algorithms into applications developed using
other languages and technologies

• Encrypt and protect MATLAB code

When Not To Use MATLAB Compiler
Do not use MATLAB Compiler and builder products for applications shown
on the following table. Instead, use the recommended MathWorks™ product
indicated.

To... Use...

• Generate readable, efficient, and
embeddable C code from M-code

• Generate MEX functions from M-code
for rapid prototyping and verification
of generated C code within MATLAB

• Integrate M-code into Simulink®

• Speed up fixed-point M-code

• Generate hardware description
language (HDL) from M-code

Embedded MATLAB™ User’s
Guide

• Integrate custom C code into MATLAB
with MEX files

• Call MATLAB from C and Fortran
programs

MATLAB External Interfaces

Deploy Java components into enterprise
computing environments and to
MATLAB users

MATLAB® Builder™ JA User’s
Guide

1-3

1 Getting Started

To... Use...

Deploy .NET and COM components into
enterprise computing environments and
to MATLAB users

MATLAB Builder NE User’s
Guide

Deploy Excel add-ins to enterprise
computing environments and to
MATLAB users

MATLAB Builder EX User’s
Guide

How Do I Use This Product?
You use MATLAB Compiler by running the Deployment Tool GUI
(deploytool) or executing the mcc command from MATLAB.

How Does This Product Work?
MATLAB Compiler readies your application for deployment to enterprise
computing environments using a combination of generated applications,
libraries, and wrapper files.

MATLAB Compiler Generated Applications and Libraries
When you package and distribute applications and libraries that MATLAB
Compiler generates, you include the MATLAB Compiler Runtime (MCR). You
can include a set of supporting files generated by MATLAB Compiler. You
also set the system paths on the target machine so your application finds the
MCR and supporting files.

The MCR is an engine for execution of compiled MATLAB code. As such,
when a compiled application runs, there is sometimes a delay as the MCR
is initialized. There can be a delay the first time you run the application,
although typically less than you experience running on the MATLAB desktop.

An application or library generated by MATLAB Compiler has two parts:
a platform-specific binary file and an archive file containing the encrypted
MATLAB application and data. An application binary file consists of a main
function. By contrast, a library binary consists of multiple functions for
exporting.

1-4

Product Overview

Wrapper Files
MATLAB Compiler generates wrapper files. These files provide an interface
to your M-code when compiled. The wrapper files and M-code are compiled
into platform-specific binary files. Wrapper files differ depending on the
execution environment.

What Is The MATLAB Compiler Runtime (MCR)?
The MATLAB Compiler Runtime is a standalone set of shared libraries that
enable the execution of M-files, even on computers without an installed
version of MATLAB.

You have the option to include the MCR with every package generated
by the Deployment Tool (deploytool). Include the MCR by clicking Add
MCR on the Package tab. Install it on target machines by running the
self-extracting package executable. For more information on the MCR and the
MCR Installer, see What Is the MCR and How Do I Get It?

1-5

1 Getting Started

Before You Use MATLAB Compiler

In this section...

“Understand Your Role in the Application Deployment Process” on page 1-6

“Verify Your Knowledge Base” on page 1-8

“Install Required Products” on page 1-9

“Select Your C or C++ Compiler with mbuild -setup” on page 1-9

Understand Your Role in the Application Deployment
Process
Depending on the size of your organization, you play one role, or many, in the
process of successfully deploying a standalone application or shared library.

For example, you analyze user requirements and satisfy them by writing a
program in M-code. You can also implement the infrastructure to deploy an
application to users in computing environments different from your own. In
smaller organizations, you find one person responsible for performing tasks
associated with multiple roles. The table Application Deployment Roles,
Tasks, and References on page 1-7 describes some of the different MATLAB
Compiler roles or jobs. It also describes which tasks you would most likely
perform when “Deploying with the Magic Square Example” on page 1-10
in this chapter.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

1-6

Before You Use MATLAB® Compiler™

Application Deployment Roles, Tasks, and References

Role Tasks References

MATLAB Programmer • Understand
end-user business
requirements and
the mathematical
models they support

• Write M-code.

• Build an executable
component with
MATLAB tools
(usually with
support from an
IT programmer
or Front-End
Developer).

• Package the
component for
distribution to
customers.

• Pass the packaged
component to the
IT programmer
or Front-End
Developer for
rollout and further
integration into
the end-user
environment.

“Magic Square Example:
MATLAB Programmer
Tasks” on page 1-11

1-7

1 Getting Started

Application Deployment Roles, Tasks, and References (Continued)

Role Tasks References

C or C++ Programmer • Set the target
computer path so the
system can support
the compiled code at
run time.

• Install the MCR on
target computers by
running the MCR
Installer.

• Ensure that the
final standalone
application or library
executes reliably
in the customer
environment.

“Magic Square Example:
C/C++ Programmer
Tasks” on page 1-16

External user Executes the solution
created by MATLAB
and Front-End
Developers.

Run the deployed
application (outside the
scope of this document).

Verify Your Knowledge Base
Using the MATLAB Compiler product requires the following knowledge:

• If your job function is MATLAB programmer:

- A basic knowledge of MATLAB, and how to work with cell arrays and
structures

• If your job function is C or C++ developer:

- Exposure to the C or C++ programming languages

- Procedural or object-oriented programming concepts

1-8

Before You Use MATLAB® Compiler™

Install Required Products
Install the following products to run the example described in this chapter:

• MATLAB

• MATLAB Compiler

• A supported C or C++ compiler

For more information about product installation and requirements, see
Chapter 2, “Installation and Configuration”.

Select Your C or C++ Compiler with mbuild -setup
The first time you use MATLAB Compiler, after starting MATLAB, run the
following command:

mbuild -setup

For more information about mbuild -setup, see Chapter 2, “Installation and
Configuration”.

If you need information about writing M-files, see MATLAB Programming,
which is part of MATLAB documentation.

1-9

http://www.mathworks.com/support/compilers/current_release/

1 Getting Started

Deploying with the Magic Square Example

In this section...

“About This Example” on page 1-10

“Magic Square Example: MATLAB Programmer Tasks” on page 1-11

“Magic Square Example: C/C++ Programmer Tasks” on page 1-16

About This Example
The examples for MATLAB Compiler are in
matlabroot\extern\examples\compiler. For matlabroot, substitute the
MATLAB root folder on your system. Type matlabroot to see this folder
name.

The Magic Square example in this section shows you how to:

• Use MATLAB Compiler to create and package a simple standalone
application that compiles an M-file, magicsquare.m

• Access the examples provided with MATLAB Compiler.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

Tip To set examplesDir to the path
matlabroot\extern\examples\compiler, click here.

Command-Line Alternative
The examples use the deploytool GUI, a graphical front-end interface
to MATLAB Compiler software. You can perform these tasks using the
command-line interface to MATLAB Compiler software. See “Using the
Command Line (mcc) to Create Standalone Applications and Shared
Libraries” on page 1-16 and the mcc reference page for complete reference
information.

1-10

Deploying with the Magic Square Example

Magic Square Example: MATLAB Programmer Tasks
The MATLAB programmer performs the tasks described in the following table.

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a

component that is given to the

business service developer
MATLAB

Programmer

Key Tasks for the MATLAB Programmer

Task Reference

Start the product. “Starting the Deployment Tool” on
page 1-12

Prepare to run the example by
copying the MATLAB example files
into a work folder.

“Copying the Example Files” on page
1-12

Test the M-code to ensure that it is
suitable for deployment.

“Testing the M-File You Want To
Deploy” on page 1-13

Create a standalone application
or shared library (encapsulating
your M-code in a C or C++ class)
by running the Build function in
deploytool.

“Creating a Deployable Standalone
Application or Shared Library” on
page 1-14

Run the Packaging Tool to bundle
your standalone application or
shared library with the additional
files you selected.

“Packaging Your Deployment
Application (Optional)” on page 1-15

Copy the output from the Packaging
Tool (the distrib folder).

“Copy the Package You Created
(Optional)” on page 1-15

The Magic Square example shows how to create a standalone application, or
shared library (magicsquare), containing the magic class and other files for
application deployment. The class encapsulates a MATLAB function which
computes a magic square.

1-11

1 Getting Started

The client standalone application or shared library converts the array
returned by the function to a native array and displays it on the screen. When
you run the magicsquare application from the command line, you pass the
dimension for the magic square as a command-line argument

Note The examples for the MATLAB Compiler product reside in
matlabroot\extern\examples\compiler. This example assumes that the
work folder is on drive D:.

Starting the Deployment Tool
You can access the MATLAB Compiler product through the Deployment Tool
GUI (deploytool). Alternately, you can use the mcc function of MATLAB
Compiler. deploytool is the GUI front end for mcc, the command that
executes MATLAB Compiler.

This tutorial uses deploytool. If you want to use mcc, see “Using the
Command Line (mcc) to Create Standalone Applications and Shared
Libraries” on page 1-16 . Also see the mcc reference page for complete
reference information.

To start the Deployment Tool by perform the following steps:

1 Start MATLAB.

2 Type deploytool at the MATLAB command prompt. The deploytool
GUI opens.

Copying the Example Files
Prepare to run the example by copying needed files into your work area as
follows:

1 Navigate to matlabroot\extern\examples\compiler. matlabroot is the
MATLAB root folder (where you installed MATLAB). To find the value of
this variable on your system, type matlabroot at a MATLAB command
prompt.

1-12

Deploying with the Magic Square Example

2 Create a work folder named Work (D:\Work). Create a subfolder in your
Work folder and name it MagicExample (D:\Work\MagicExample). Avoid
using spaces in your folder names, if possible.

3 Copy magicsquare.m from matlabroot\extern\examples\compiler to
D:\Work\MagicExample.

4 To run your resulting client standalone application or shared library, verify
that MATLAB can find it. Use the File > Set Path option in MATLAB to
add the D:\Work\MagicExample folder to the MATLAB search path.

5 At the MATLAB command prompt, change your working folder to
D:\Work\MagicExample.

Testing the M-File You Want To Deploy
In this example, you test an M-file (magicsquare.m) containing the predefined
MATLAB function magic. Testing the file provides a baseline to compare to
the results of the function as a deployable standalone application or shared
library.

1 Using MATLAB, locate and open magicsquare.m. This file has the
following:

function m = magicsquare(n)
%MAGICSQUARE generates a magic square matrix of the size
% specified by the input parameter n.

% Copyright 2003-2007 The MathWorks, Inc.

if ischar(n)
n=str2num(n);

end
m = magic(n)

2 At the MATLAB command prompt, enter magicsquare(5), and view the
results. The output appears as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

1-13

1 Getting Started

10 12 19 21 3
11 18 25 2 9

Creating a Deployable Standalone Application or Shared
Library
You create a deployable standalone application or shared library by using the
Deployment Tool GUI to build a wrapper. This wrapper encloses the sample
M-code discussed in “Testing the M-File You Want To Deploy” on page 1-13.
To run the Magic Square example, use the following information:

Project Name MagicExample

File to compile magicsquare.m

1 Create a deployment project. A project is a collection of files you bundle
together under a project file name (.prj file) for your convenience in the
Deployment Tool. Using a project makes it easy for you to build and run
an application many times—effectively testing it—until it is ready for
deployment.

a Type the name of your project in the Name field.

b Enter the location of the project in the Location field. Alternately,
navigate to the location.

c Select the target for the deployment project from the Target drop-down
menu.

d Click OK.

2 On the Build tab, add what you want to compile, and any supporting
files, to the project.

a Do the following, depending on the type of application you are building:

• If you are building a C or C++ application, click Add files

b Add any supporting files. For example, you can add the following files,
as appropriate for your project:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

1-14

Deploying with the Magic Square Example

• Code you want to remain private

• Code from other programs that you want to compile and link into
the main file

If you want to include additional files, in the Shared Resources and
Helper Files area, click Add files/directories. Click Open to select
the file or files.

3 When you complete your changes, click the Build button ().

Packaging Your Deployment Application (Optional)
Packaging is bundling the standalone application or shared libraries with
additional files for end users. Perform this step using the Package tab of
deploytool. Alternately, copy the contents of the distrib folder and the
MCR Installer to a local folder of your choice.

1 On the Package tab, add the MATLAB Compiler Runtime (the MCR) by
clicking Add MCR.

2 Next, add others files useful for end users. The readme.txt file contains
important information about others files useful for end users. To package
additional files or folders, click Add file/directories, select the file or
folder you want to package, and click Open.

3 In the Deployment Tool, click the Packaging button ().

4 After packaging, the package resides in the distrib subfolder. On
Windows®, the package is a self-extracting executable. On platforms other
than Windows, it is a .zip file. Verify that the contents of the distrib
folder contains the files you specified.

Copy the Package You Created (Optional)
Copy the package that you created from the distrib folder to the local folder
of your choice or send them to the C/C++ programmer, if applicable.

1-15

1 Getting Started

Using the Command Line (mcc) to Create Standalone
Applications and Shared Libraries
Instead of the GUI, you can use the mcc command to run MATLAB Compiler.
The following table shows sample commands to create a standalone
application or a shared library using mcc at the operating system prompt.

Desired Result Command

mcc -m mymfunction.m
Standalone application
from the M-file
mymfunction

Creates a standalone application named mymfunction.exe on
Windows platforms and mymfunction on platforms that are not
Windows.

mcc -B csharedlib:libfiles file1.m file2.m file3.m
C shared library from
the M-files file1.m,
file2.m, and file3.m Creates a shared library named libfiles.dll on Windows,

libfiles.so on Linux® and Solaris™, and libfiles.dylib on Mac
OS® X.

mcc -B cpplib:libfiles file1.m file2.m file3.m
C++ shared library from
the M-files file1.m,
file2.m, and file3.m Creates a shared library named libfiles.dll on Windows,

libfiles.so on Linux and Solaris, and libfiles.dylib on Mac OS X.

Magic Square Example: C/C++ Programmer Tasks
The C or C++ programmer performs these tasks.

Key Tasks for the C or C++ Programmer

Task Reference

Ensure that you have the needed
files from the MATLAB Programmer
before proceeding.

“Gathering Files Necessary for
Deployment” on page 1-17

Distribute the files. “Distribute to End Users” on page
1-17

1-16

Deploying with the Magic Square Example

Key Tasks for the C or C++ Programmer (Continued)

Task Reference

Install the MCR on target computers
by running the MCR Installer.
Update system paths on UNIX
systems.

“Install the MCR on Target
Computers Without MATLAB and
Update System Paths” on page 1-18

Ensure that the final standalone
application or library executes
reliably in the end-user environment.

“Build and Test” on page 1-19

Gathering Files Necessary for Deployment
Before beginning, verify that you have access to the following files, packaged
by the MATLAB Programmer in “Copy the Package You Created (Optional)”
on page 1-15. End users who do not have a copy of MATLAB installed need
the following:

• MCR Installer. For locations of all MCR Installers, run the mcrinstaller
command.

• readme.txt file

See “Packaging Your Deployment Application (Optional)” on page 1-15 for
more information about these files.

Distribute to End Users
If the MATLAB programmer packages the standalone or library (see
“Packaging Your Deployment Application (Optional)” on page 1-15), paste the
package in a folder on the target machine, and run it. If you are using a
.zip file bundled with WinZip, unzip and extract the contents to the target
machine.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

1-17

http://www.winzip.com

1 Getting Started

Install the MCR on Target Computers Without MATLAB and
Update System Paths
On target computers without MATLAB, install the MCR, if it is not already
present on the development machine:

What Is the MATLAB Compiler Runtime (MCR) and How Do I Get It?

The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable the execution of M-files
on systems without an installed version of MATLAB. In order to deploy a
component, you package the MCR along with it. Before you utilize the MCR
on a system without MATLAB, run the MCR installer.

You have the option to include the MCR with every package generated by the
Deployment Tool. On the Package tab of the deploytool interface, click
Add MCR.

To install the MCR, perform the following tasks on the target machines:

1 If you added the MCR during packaging, open the package to locate the
installer. Otherwise, run the command mcrinstaller to display the
locations where you can download it.

2 If you are running on a platform other than Windows, set the system paths
on the target machine. Windows paths are set automatically. On Linux
and Mac, you can use the run script to set paths.

Setting the paths enables your application to find the MCR.

After you install the MCR, see these resources for more information on
working with the various MWArray APIs:

• For information on the C++ API, see Appendix C, “C++ Utility Library
Reference” in the MATLAB® Compiler™ User’s Guide on page 1.

• For information on the MWArray class library (the .NET API), see the
MATLAB Builder NE “Documentation Set” at The MathWorks Web site.

• For information on MWArray types (the Java™ API), see the MATLAB
Builder JA “Documentation Set” at The MathWorks Web site.

1-18

http://www.mathworks.com/access/helpdesk/help/toolbox/dotnetbuilder/index.html?/access/helpdesk/help/toolbox/dotnetbuilder/&http;://www.mathworks.com/support/product/product.html?product=MN
http://www.mathworks.com/access/helpdesk/help/toolbox/javabuilder/index.html?/access/helpdesk/help/toolbox/javabuilder/&http;://www.mathworks.com/support/product/product.html?product=MJ

Deploying with the Magic Square Example

For more about the MCR, see “Working with the MCR” on page 4-21 in the
MATLAB® Compiler™ User’s Guide on page 1.

Replacement of MCRInstaller.zip and BUILDMCR Functionality. In
past releases, you included MCRInstaller.zip in your packaged application
(created by running the buildmcr command). Now, you run the following
files, which trigger self-extracting archives, that replace the functionality
previously provided by MCRInstaller.zip. These files ship with MATLAB
Compiler. To get information on the where you can find the MCR Installer,
run the command mcrinstaller.

Note Since you no longer create MCRInstaller.zip, buildmcr is no longer
supported.

Build and Test
Build and test the standalone application or shared library as you would any
application in your environment. After you create and distribute the initial
application, you continue to enhance it.

1-19

1 Getting Started

For More Information

About This Look Here

Detailed information on
standalone applications

Chapter 6, “Standalone Applications”

Creating libraries Chapter 7, “Libraries”

Using the mcc command Chapter 5, “Compiler Commands”

Troubleshooting Chapter 8, “Troubleshooting”

1-20

2

Installation and
Configuration

This chapter describes the system requirements for MATLAB Compiler. It
also contains installation and configuration information for all supported
platforms.

When you install your ANSI® C or C++ compiler, you may be required to
provide specific configuration details regarding your system. This chapter
contains information for each platform that can help you during this phase
of the installation process.

• “Requirements” on page 2-2

• “Installation” on page 2-4

• “Configuration” on page 2-7

• “Supported Compiler Restrictions” on page 2-11

• “Options Files” on page 2-12

2 Installation and Configuration

Requirements

In this section...

“System Requirements” on page 2-2

“Supported Third-Party Compilers” on page 2-2

System Requirements
To install MATLAB Compiler, you must have the proper version of MATLAB
installed on your system. The MATLAB Compiler Platform & Requirements
page, which is accessible from our Web site, provides this information.
MATLAB Compiler imposes no operating system or memory requirements
beyond those that are necessary to run MATLAB. MATLAB Compiler
consumes a small amount of disk space.

MATLAB Compiler requires that a supported ANSI C or C++ compiler be
installed on your system. Certain output targets require particular compilers.

Note Before you use MATLAB Compiler for the first time, you must run
mbuild -setup to configure your C/C++ compiler to work with MATLAB
Compiler.

In general, MATLAB Compiler supports the current release of a third-party
compiler and its previous release. Since new versions of compilers are
released on a regular basis, it is important to check our Web site for the latest
supported compilers.

Supported Third-Party Compilers
For an up-to-date list of all the compilers supported by MATLAB and
MATLAB Compiler, see the MathWorks™ Technical Support Department’s
Technical Notes at

http://www.mathworks.com/support/compilers/current_release/

2-2

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Requirements

Supported ANSI C and C++ Windows Compilers
Use one of the following 32-bit C/C++ compilers that create 32-bit Windows
dynamically linked libraries (DLLs) or Windows applications:

• Lcc C version 2.4.1 (included with MATLAB). This is a C-only compiler;
it does not work with C++.

• Microsoft® Visual C++® (MSVC).

Note The only compiler that supports the building of COM objects and
Excel® plug-ins is Microsoft Visual C++. The only compiler that supports
the building of .NET objects is Microsoft® Visual C# Compiler for the .NET
Framework (Version 2.0 and higher).

Supported ANSI C and C++ UNIX Compilers
MATLAB Compiler supports the native system compilers on Solaris. On
Linux, Linux x86-64, and Mac OS X, MATLAB Compiler supports gcc and
g++.

2-3

2 Installation and Configuration

Installation

In this section...

“Installing MATLAB® Compiler ” on page 2-4

“Installing an ANSI C or C++ Compiler” on page 2-5

Installing MATLAB Compiler
MATLAB Compiler requires a supported ANSI C or C++ compiler installed on
your system as well. Refer to the “Installing an ANSI C or C++ Compiler” on
page 2-5 for more information.

Windows Operating System
To install MATLAB Compiler on Windows, follow the instructions in the
Installation Guide for Windows documentation. If you have a license to install
MATLAB Compiler, it will appear as one of the installation choices that you
can select as you proceed through the installation process.

If MATLAB Compiler does not appear in your list of choices, contact The
MathWorks to obtain an updated License File (license.dat) for multiuser
network installations, or an updated Personal License Password (PLP) for
single-user, standard installations.

You can contact The MathWorks:

• Via the Web at www.mathworks.com. On the MathWorks home page,
click My Account to access your MathWorks Account, and follow the
instructions.

• Via e-mail at service@mathworks.com.

UNIX Operating System
To install MATLAB Compiler on UNIX® workstations, follow the instructions
in the Installation Guide for UNIX documentation. If you have a license to
install MATLAB Compiler, it appears as one of the installation choices that
you can select as you proceed through the installation process. If MATLAB

2-4

http://www.mathworks.com

Installation

Compiler does not appear as one of the installation choices, contact The
MathWorks to get an updated license file (license.dat).

Note In order to run compiled applications from the DOS command prompt,
you must reboot (or log out and log in) after installing MATLAB Compiler.

Installing an ANSI C or C++ Compiler
To install your ANSI C or C++ compiler, follow the vendor’s instructions that
accompany your C or C++ compiler. Be sure to test the C or C++ compiler to
make sure it is installed and configured properly. Typically, the compiler
vendor provides some test procedures.

Note If you encounter problems relating to the installation or use of your
ANSI C or C++ compiler, consult the documentation or customer support
organization of your C or C++ compiler vendor.

When you install your C or C++ compiler, you might encounter configuration
questions that require you to provide particular details. These tables provide
information on some of the more common issues.

Windows Operating System

Issue Comment

Installation options We recommend that you do a full
installation of your compiler. If you
do a partial installation, you may
omit a component that MATLAB
Compiler relies on.

Installing debugger files For the purposes of MATLAB
Compiler, it is not necessary
to install debugger (DBG) files.
However, you may need them for
other purposes.

Microsoft Foundation Classes (MFC) This is not required.

2-5

2 Installation and Configuration

Windows Operating System (Continued)

Issue Comment

16-bit DLLs This is not required.

ActiveX® This is not required.

Running from the command line Make sure you select all relevant
options for running your compiler
from the command line.

Updating the registry If your installer gives you the option
of updating the registry, you should
do it.

Installing Microsoft Visual C++
Version 6.0

If you need to change the location
where this compiler is installed,
you must change the location of the
Common folder. Do not change the
location of the VC98 folder from its
default setting.

UNIX Operating System

Issue Comment

Determine which C or C++ compiler
is installed on your system.

See your system administrator.

Determine the path to your C or C++
compiler.

See your system administrator.

Installing on either Maci or Maci64 Install X Code from installation DVD

2-6

Configuration

Configuration

In this section...

“About the mbuild Utility” on page 2-7

“Configuring an ANSI C or C++ Compiler” on page 2-7

About the mbuild Utility
The mbuild script provides an easy way for you to specify an options file that
lets you:

• Set the default compiler and linker settings for each supported compiler.

• Change compilers or compiler settings.

• Build your application.

mbuild simplifies the process of setting up a C or C++ compiler. Typically,
you only need to use the mbuild utility’s setup option once to specify which
third-party compiler you want to use. For more information on the mbuild
utility, see the mbuild reference page.

MATLAB Compiler (mcc) automatically invokes mbuild under certain
conditions. In particular, mcc -m or mcc -l invokes mbuild to perform
compilation and linking.

See the reference page for more information about mbuild. For examples of
mbuild usage, see “Compiling the Driver Application” on page 7-21.

Configuring an ANSI C or C++ Compiler

Compiler Options Files
Options files contain flags and settings that control the operation of your
installed C and C++ compiler. Options files are compiler-specific, i.e., there
is a unique options file for each supported C/C++ compiler, which The
MathWorks provides.

2-7

2 Installation and Configuration

When you select a compiler to use with MATLAB Compiler , the corresponding
options file is activated on your system. To select a default compiler, use

mbuild -setup

Additional information on the options files is provided in this chapter for
those users who may need to modify them to suit their own needs. Many users
never have to be concerned with the inner workings of the options files and
only need the setup option to initially designate a C or C++ compiler. If you
need more information on options files, see “Options Files” on page 2-12.

Note The following examples apply only to the 32-bit version of MATLAB.

Windows. Executing the command on Windows gives

Please choose your compiler for building standalone
MATLAB applications:

Would you like mbuild to locate installed compilers [y]/n? n

Select a compiler:
[1] Lcc-win32 C 2.4.1
[2] Microsoft Visual C++ 6.0
[3] Microsoft Visual C++ .NET 2003
[4] Microsoft Visual C++ 2005 SP1
[5] Microsoft Visual C++ 2008
[6] Microsoft Visual C++ 2008 Express

[0] None

The preconfigured options files that are included with MATLAB for Windows
are shown below.

Note These options apply only to the 32-bit version of MATLAB.

2-8

Configuration

Options File Compiler

lcccompp.bat Lcc C, Version 2.4.1 (included with
MATLAB)

msvc60compp.bat
msvc80compp.bat

msvc90compp.bat

Microsoft Visual C/C++, Version 6.0
Microsoft Visual C/C++, Version 8.0
Microsoft Visual C/C++, Version 8.0
Express Edition
Microsoft Visual C/C++, Version 9.0
Microsoft Visual C/C++, Version 9.0
Express Edition

UNIX. Executing the command on UNIX gives

mbuild -setup

Using the 'mbuild -setup' command selects an options file that
is placed in ~/.matlab/current_release and
used by default for 'mbuild'. An options file in the current

working directory or specified on
the command line overrides the default options file
in ~/.matlab/current_release.

Options files control which compiler to use, the compiler
and link command options, and the run time libraries to link
against.

To override the default options file, use the 'mbuild -f'
command (see 'mbuild -help' for more information).

The options files available for mbuild are:

1: matlabroot/bin/mbuildopts.sh :
Build and link with MATLAB C-API or MATLAB Compiler-generated
library via the system ANSI C/C++ compiler

matlabroot/bin/mbuildopts.sh is being copied to
/home/user/.matlab/current_release/mbuildopts.sh

2-9

2 Installation and Configuration

The preconfigured options file that is included with MATLAB for UNIX is
mbuildopts.sh, which uses the system native ANSI compiler for Solaris
and gcc for Linux and Macintosh®.

2-10

Supported Compiler Restrictions

Supported Compiler Restrictions
The known restrictions regarding the use of supported compilers on the
Windows operating system are:

• The LCC C compiler does not support C++ or versions of Windows other
than 32–bit.

• The only compiler that supports the building of COM objects and Excel
plug-ins is Microsoft Visual C/C++.

• The only compiler that supports the building of .NET objects is the
Microsoft Visual C# Compiler for the .NET Framework (Version 2.0 and
higher).

2-11

2 Installation and Configuration

Options Files

In this section...

“Locating the Options File” on page 2-12

“Changing the Options File” on page 2-13

Locating the Options File

Windows Operating System
To locate your options file on Windows, the mbuild script searches the
following locations:

• Current folder

• The user profile folder (see “User Profile Directory Under Windows” on
page 2-12 for more information about this folder)

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild searches your machine for a supported C compiler and uses
the factory default options file for that compiler. If multiple compilers are
found, you are prompted to select one.

User Profile Directory Under Windows. The Windows user profile
folder is a folder that contains user-specific information such as desktop
appearance, recently used files, and Start menu items. The mbuild utility
stores its options files, compopts.bat, which is created during the -setup
process, in a subfolder of your user profile folder, named Application
Data\MathWorks\MATLAB\current_release. Under Windows with user
profiles enabled, your user profile folder is %windir%\Profiles\username.
Under Windows with user profiles disabled, your user profile folder is
%windir%. You can determine whether or not user profiles are enabled by
using the Passwords control panel.

UNIX Operating System
To locate your options file on UNIX, the mbuild script searches the following
locations:

2-12

Options Files

• Current folder

• $HOME/.matlab/current_release

• matlabroot/bin

mbuild uses the first occurrence of the options file it finds. If no options file is
found, mbuild displays an error message.

Changing the Options File
Although it is common to use one options file for all of your MATLAB Compiler
related work, you can change your options file at anytime. The setup option
resets your default compiler so that the new compiler is used every time. To
reset your C or C++ compiler for future sessions, use

mbuild -setup

Windows Operating System

Modifying the Options File. You can use of the setup option to change your
options file settings on Windows. The setup option copies the appropriate
options file to your user profile folder.

To modify your options file on Windows:

1 Use mbuild -setup to make a copy of the appropriate options file in your
local area.

2 Edit your copy of the options file in your user profile folder to correspond
to your specific needs and save the modified file.

After completing this process, the mbuild script will use the new options file
every time with your modified settings.

UNIX Operating System
The setup option creates a user-specific, matlab folder in your individual
home folder and copies the appropriate options file to the folder. (If the folder
already exists, a new one is not created.) This matlab folder is used for your
individual options files only; each user can have his or her own default options

2-13

2 Installation and Configuration

files (other MATLAB products may place options files in this folder). Do not
confuse these user-specific matlab folders with the system matlab folder,
where MATLAB is installed.

Modifying the Options File. You can use the setup option to change your
options file settings on UNIX. For example, if you want to make a change
to the current linker settings, or you want to disable a particular set of
warnings, you should use the setup option.

To modify your options file on the Linux operating system:

1 Use mbuild -setup to make a copy of the appropriate options file in your
local area.

2 Edit your copy of the options file to correspond to your specific needs and
save the modified file.

This sets your default compiler’s options file to your specific version.

2-14

3

Compilation Process

This chapter provides an overview of how MATLAB Compiler works. In
addition, it lists the various sets of input and output files used by this product.

• “Overview of MATLAB® Compiler Technology ” on page 3-2

• “Input and Output Files” on page 3-6

• “Working with MATLAB Data Files Using Load and Save” on page 3-12

3 Compilation Process

Overview of MATLAB Compiler Technology

In this section...

“MATLAB® Compiler Runtime” on page 3-2

“Component Technology File” on page 3-2

“Build Process” on page 3-3

MATLAB Compiler Runtime
MATLAB Compiler 4 uses the MATLAB Compiler Runtime (MCR), which is a
standalone set of shared libraries that enable the execution of M-files. The
MCR provides complete support for all features of the MATLAB language.

Note Since the MCR technology provides full support for the MATLAB
language, including the Java programming language, starting a compiled
application takes approximately the same amount of time as starting
MATLAB. The amount of resources consumed by the MCR is necessary in
order to retain the power and functionality of a full version of MATLAB.

The MCR makes use of thread locking so that only one thread is allowed to
access the MCR at a time. As a result, calls into the MCR are threadsafe for
MATLAB Compiler generated libraries, COM objects, and .NET objects.

Component Technology File
MATLAB Compiler also embeds a Component Technology File (CTF) archive
in each generated binary to house the deployable package. All M-files are
encrypted in the CTF archive using the Advanced Encryption Standard (AES)
cryptosystem where symmetric keys are protected by 1024-bit RSA keys.

Each application or shared library produced by MATLAB Compiler has an
associated CTF archive. The archive contains all the MATLAB based content
(M-files, MEX-files, etc.) associated with the component. If you choose the
extract the CTF archive as a separate file (see “Overriding Default CTF
Archive Embedding Using the MCR Component Cache” on page 5-20), the
files remain encrypted.

3-2

Overview of MATLAB® Compiler™ Technology

Additional Details
Multiple CTF archives, such as COM, .NET, or Excel components, can coexist
in the same user application, but you cannot mix and match the M-files they
contain. You cannot combine encrypted and compressed M-files from multiple
CTF archives into another CTF archive and distribute them.

All the M-files from a given CTF archive are locked together with a unique
cryptographic key. M-files with different keys will not execute if placed in
the same CTF archive. If you want to generate another application with a
different mix of M-files, you must recompile these M-files into a new CTF
archive.

The CTF archive and generated binary will be cleaned up following a failed
compilation, but only if these files did not exist before compilation was
initiated.

Caution Release Engineers and Software Configuration Managers:
CTF archives must not be subjected to build procedures or processes that
"strip" shared libraries. If they are, the CTF archive may be stripped from the
binary, resulting in run-time errors for the driver applications.

Build Process
The process of creating software components with MATLAB Compiler
is completely automatic. For example, to create a standalone MATLAB
application, you supply the list of M-files that make up the application.
MATLAB Compiler then performs the following operations:

• Dependency analysis

• Code generation

• Archive creation

• Compilation

• Linking

This figure illustrates how MATLAB Compiler takes user code and generates
a standalone executable.

3-3

3 Compilation Process

Creating a Standalone Executable

Dependency Analysis
The first step determines all the functions on which the supplied M-files,
MEX-files, and P-files depend. This list includes all the M-files called by the
given files as well as files that they call, and so on. Also included are all
built-in functions and MATLAB objects.

3-4

Overview of MATLAB® Compiler™ Technology

Wrapper Code Generation
This step generates all the source code needed to create the target component,
including

• The C/C++ interface code to those M-functions supplied on the command
line (foo_main.c). For libraries and components, this file includes all of
the generated interface functions.

• A component data file that contains information needed to execute the
M-code at run-time. This data includes path information and encryption
keys needed to load the M-code stored in the component’s CTF archive.

Archive Creation
The list of MATLAB files (M-files and MEX-files) created during dependency
analysis is used to create a CTF archive that contains the files needed by
the component to properly execute at run-time. The files are encrypted and
compressed into a single file for deployment. Directory information is also
included so that the content is properly installed on the target machine.

C/C++ Compilation
This step compiles the generated C/C++ files from wrapper code generation
into object code. For targets that support the inclusion of user-supplied C/C++
code on the mcc command line, this code is also compiled at this stage.

Linking
The final step links the generated object files with the necessary MATLAB
libraries to create the finished component.

The C/C++ compilation and linking steps use the mbuild utility that is
included with MATLAB Compiler.

3-5

3 Compilation Process

Input and Output Files

In this section...

“Standalone Executable” on page 3-6

“C Shared Library” on page 3-7

“C++ Shared Library” on page 3-9

“Macintosh 64 (Maci64)” on page 3-11

Standalone Executable
In this example, MATLAB Compiler takes the M-files foo.m and bar.m as
input and generates a standalone called foo.

mcc -m foo.m bar.m

File Description

foo_main.c The main-wrapper C source file containing the program’s
main function. The main function takes the input
arguments that are passed on the command line and
passes them as strings to the foo function.

foo_mcc_component_data.c C source file containing data needed by the MCR to run
the application. This data includes path information,
encryption keys, and other initialization information for
the MCR.

foo The main file of the application. This file reads and
executes the content stored in the embedded CTF
archive. On Windows, this file is foo.exe.

run_component.sh mcc generates run_<component>.sh file on UNIX
(including Mac) systems for standalone applications. It
temporarily sets up the environment variables needed
at runtime and executes the application. On Windows,
mcc doesn’t generate this run script file, because the
environment variables have already been set up by the
installer. In this case, you just run your standalone
.exe file.

3-6

Input and Output Files

C Shared Library
In this example, MATLAB Compiler takes the M-files foo.m and bar.m as
input and generates a C shared library called libfoo.

mcc -W lib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.c The library wrapper C source file containing the
exported functions of the library representing
the C interface to the two M-functions (foo.m
and bar.m) as well as library initialization
code.

libfoo.h The library wrapper header file. This file is
included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c C source file containing data needed by the
MCR to initialize and use the library. This
data includes path information, encryption
keys, and other initialization for the MCR.

libfoo.exports The exports file used by mbuild to link the
library.

libfoo The shared library binary file. On Windows,
this file is libfoo.dll. On Solaris, this file is
libfoo.so.

Note UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

3-7

3 Compilation Process

File Description

libname.exp Exports file used by the linker. The linker uses
the export file to build a program that contains
exports, usually a dynamic-link library (.dll).
The import library is used to resolve references
to those exports in other programs.

libname.lib Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dll is
loaded. The linker uses the information from
the import library to build the lookup table for
using identifiers that are not included in the
.dll. When an application or .dll is linked, an
import library may be generated, which will
be used for all future .dlls that depend on the
symbols in the application or .dll.

3-8

Input and Output Files

C++ Shared Library
In this example, MATLAB Compiler takes the M-files foo.m and bar.m as
input and generates a C++ shared library called libfoo.

mcc -W cpplib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.cpp The library wrapper C++ source file containing
the exported functions of the library representing
the C++ interface to the two M-functions (foo.m
and bar.m) as well as library initialization code.

libfoo.h The library wrapper header file. This file is
included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c C++ source file containing data needed by the
MCR to initialize and use the library. This data
includes path information, encryption keys, and
other initialization for the MCR.

libfoo.exports The exports file used by mbuild to link the library.

libfoo The shared library binary file. On Windows,
this file is libfoo.dll. On Solaris, this file is
libfoo.so.

Note UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

3-9

3 Compilation Process

File Description

libname.exp Exports file used by the linker. The linker uses
the export file to build a program that contains
exports (usually a dynamic-link library (.dll).
The import library is used to resolve references to
those exports in other programs.

libname.lib Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dll is
loaded. The linker uses the information from the
import library to build the lookup table for using
identifiers that are not included in the .dll. When
an application or .dll is linked, an import library
may be generated, which will need to be used for
all future .dlls that depend on the symbols in the
application or .dll.

3-10

Input and Output Files

Macintosh 64 (Maci64)
For 64-bit Macintosh, a Macintosh application bundle is created.

File Description

foo.app The bundle created for executable foo.
Execution of the bundle occurs through
foo.app/Contents/MacOS/foo.

foo Application

run_component.sh The generated shell script which executes the
application through the bundle.

3-11

3 Compilation Process

Working with MATLAB Data Files Using Load and Save
If your deployed application uses MATLAB data files (MAT files) to store
MATLAB variables, graphics, and other data, it is helpful to code LOAD and
SAVE functions if you need to manipulate this data and store it for later
processing.

• Use isdeployed to determine if your code is running in or out of the
MATLAB workspace.

• Specify the data file by full path name or relative to ctfroot.

• All MAT files are unchanged after mcc runs. There is no encryption on
these user included data files included in the CTF archive.

For more information about CTF archives, see “Component Technology File”
on page 3-2.

Use the following example as a template for manipulating your MATLAB
data, inside and outdside of MATLAB:

Example: Using Load/Save Functions To Process
MATLAB Data for Deployed Applications
In the following example, three MATLAB data files are specified:

• user_data.mat

• userdata/extra_data.mat

• ../externdata/extern_data.mat

Compile ex_loadsave.m with the following mcc command:

mcc -mvC ex_loadsave.m -a 'user_data.mat' -a
'./userdata/extra_data.mat' -a
'../externdata/extern_data.mat'

3-12

Working with MATLAB Data Files Using Load and Save

ex_loadsave.m

function ex_loadsave
% This example shows how to work with the
% "load/save" functions on data files in
% deployed mode. There are three source data files
% in this example.
% user_data.mat
% userdata/extra_data.mat
% ../externdata/extern_data.mat
%
% Compile this example with the mcc command:
% mcc -mC ex_loadsave.m -a 'user_data.mat' -a
% './userdata/extra_data.mat'
% -a '../externdata/extern_data.mat'
% All the folders under the current main m-file directory will
% be included as
% relative path to ctfroot; All other folders will have the
% folder
% structure included in the ctf archive file from root of the
% disk drive.
%
% If a data file is outside of the main m-file path,
% the absolute path will be
% included in ctf and extracted under ctfroot. For example:
% Data file
% "c:\$matlabroot\examples\externdata\extern_data.mat"
% will be added into ctf and extracted to
% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".
%
% All mat/data files are unchanged after mcc runs. There is
% no excryption on these user included data files. They are
% included in the ctf archive.
%
% The target data file is:
% ./output/saved_data.mat
% When writing the file to local disk, do not save any files
% under ctfroot since it may be refreshed and deleted
% when the application isnext started.

3-13

3 Compilation Process

%==== load data file =============================
if isdeployed

% In deployed mode, all file under CTFRoot in the path are loaded
% by full path name or relative to $ctfroot.
% LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));
% LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));
LOADFILENAME1=which(fullfile('user_data.mat'));
LOADFILENAME2=which(fullfile('extra_data.mat'));
% For external data file, full path will be added into ctf;
% you don't need specify the full path to find the file.
LOADFILENAME3=which(fullfile('extern_data.mat'));

else
%running the code in MATLAB
LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','user_data.mat');
LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','userdata','extra_data.mat
LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',

'externdata','extern_data.mat');
end

% Load the data file from current working directory
disp(['Load A from : ',LOADFILENAME1]);
load(LOADFILENAME1,'data1');
disp('A= ');
disp(data1);

% Load the data file from sub directory
disp(['Load B from : ',LOADFILENAME2]);
load(LOADFILENAME2,'data2');
disp('B= ');
disp(data2);

% Load extern data outside of current working directory
disp(['Load extern data from : ',LOADFILENAME3]);
load(LOADFILENAME3);
disp('ext_data= ');
disp(ext_data);

%==== multiple the data matrix by 2 ==============

3-14

Working with MATLAB Data Files Using Load and Save

result = data1*data2;
disp('A * B = ');
disp(result);

%==== save the new data to a new file ===========
SAVEPATH=strcat(pwd,filesep,'output');
if (~isdir(SAVEPATH))

mkdir(SAVEPATH);
end
SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');
disp(['Save the A * B result to : ',SAVEFILENAME]);
save(SAVEFILENAME, 'result');

3-15

3 Compilation Process

3-16

4

Deployment Process

This chapter tells you how to deploy compiled M-code to programmers and
to end users.

• “Overview” on page 4-2

• “Deploying to Programmers” on page 4-3

• “Deploying to End Users” on page 4-9

• “Working with the MCR” on page 4-21

• “Deploying a Standalone Application on a Network Drive” on page 4-35

• “MATLAB® Compiler Deployment Messages” on page 4-36

• “Using MATLAB® Compiler Generated DLLs in Windows Services” on
page 4-37

• “Reserving Memory for Deployed Applications with MATLAB Memory
Shielding” on page 4-38

4 Deployment Process

Overview
After you create a library, a component, or an application, the next step is
typically to deploy it to others to use on their machines, independent of the
MATLAB environment. These users can be programmers who want to use
the library or component to develop an application, or end users who want to
run a standalone application.

• “Deploying to Programmers” on page 4-3

• “Deploying to End Users” on page 4-9

Note When you deploy, you provide the wrappers for the compiled M-code
and the software needed to support the wrappers, including the MCR. The
MCR is version specific, so you must ensure that programmers as well as
users have the proper version of the MCR installed on their machines.

4-2

Deploying to Programmers

Deploying to Programmers

In this section...

“Steps by the Programmer to Deploy to Programmers” on page 4-3

“What Software Does a Programmer Need?” on page 4-4

“Ensuring Memory for Deployed Applications” on page 4-8

Steps by the Programmer to Deploy to Programmers

Note If you are programming on the same machine where you created the
component, you can skip the steps described here.

1 Create a package that contains the software necessary to support the
compiled M-code. It is frequently helpful to install the MCR on development
machines, for testing purposes. See “What Software Does a Programmer
Need?” on page 4-4

Note You can use the Deployment Tool to create a package for
programmers. For Windows platforms, the package created by the
Deployment Tool is a self-extracting executable. For UNIX platforms,
the package created by the Deployment Tool is a zip file that must be
decompressed and installed manually. See Chapter 1, “Getting Started” to
get started using the Deployment Tool.

2 Write instructions for how to use the package.

a If your package was created with the Deployment Tool, Windows
programmers can just run the self-extracting executable created by the
Deployment Tool. UNIX programmers must unzip and install manually.

b All programmers must set path environment variables properly. See
“Directories Required for Development and Testing” on page 10-2.

3 Distribute the package and instructions.

4-3

4 Deployment Process

What Software Does a Programmer Need?
The software that you provide to a programmer who wants to use compiled
M-code depends on which of the following kinds of software the programmer
will be using:

• “Standalone Application” on page 4-4

• “C or C++ Shared Library” on page 4-5

• “.NET Component” on page 4-6

• “COM Component” on page 4-6

• “Java Component” on page 4-7

• “COM Component to Use with Microsoft® Excel” on page 4-7

Note MCRInstaller.exe has obsoleted the need for the function buildmcr
or the creation of MCRInstaller.zip. See “Replacement of MCRInstaller.zip
and BUILDMCR Functionality” on page 1-19 for more details including
complete file paths to all install programs.

Standalone Application
To distribute a standalone application created with MATLAB Compiler to a
development machine, create a package that includes the following files.

Software Module Description

MCRInstaller.exe
(Windows)

MCRInstaller is a self-extracting executable that
installs the necessary components to develop
your application. This file is included with
MATLAB Compiler.

MCRInstaller.bin
(UNIX)

MCRInstaller is a self-extracting executable that
installs the necessary components to develop
your application on UNIX machines (other than
Mac®). This file is included with MATLAB
Compiler.

4-4

Deploying to Programmers

Software Module Description

MCRInstaller.dmg
(Mac)

MCRInstaller.dmg is a self-extracting executable
that installs the necessary components to develop
your application on Mac machines. This file is
included with MATLAB Compiler.

application_name.exe
(Windows)

application_name
(UNIX)

application_name.app
(Maci64)

Application created by MATLAB Compiler.
Maci64 must include the bundle directory
hierarchy.

Note If you are using a non-Windows operating system, “console
applications” are referred to as “standalone applications”.

C or C++ Shared Library
To distribute a shared library created with MATLAB Compiler to a
development machine, create a package that includes the following files.

Software Module Description

MCRInstaller.bin
(UNIX)

MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond to
the end user’s platform

MCRInstaller.dmg
(Mac)

MCRInstaller.dmg is a self-extracting executable
that installs the necessary components to develop
your application on Mac machines. This file is
included with MATLAB Compiler.

MCRInstaller.exe
(Windows)

Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform

libmatrix Shared library; extension varies by platform, for
example, DLL on Windows

4-5

4 Deployment Process

Software Module Description

libmatrix.h Library header file

libmatrix.lib Application library file; file is needed to create
the driver application for the shared library.

.NET Component
To distribute a .NET component to a development machine, create a package
that includes the following files.

Software Module Description

componentName.xml Documentation files

componentName.pdb (if Debug
option is selected)

Program Database File, which
contains debugging information

componentName.dll Component assembly file

MCRInstaller.exe MCR Installer (if not already
installed on the target machine)

COM Component
To distribute a COM component to a development machine, create a package
that includes the following files.

Software Module Description

mwcomutil.dll Utilities required for array processing.
Provides type definitions used in data
conversion.

4-6

Deploying to Programmers

Software Module Description

componentname_
version.dll

Component that contains compiled M-code.

MCRInstaller.exe Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.

MCRInstaller.exe installs MATLAB
Compiler Runtime (MCR), which users of
your component need to install on the target
machine once per release.

Java Component
To distribute a Java component to a development machine, create a package
that includes the componentname.jar file, a Java package containing the
Java interface to M-code.

Note For more information, see the MWArray Javadoc, which is searchable
from the Help or from the MathWorks Web site.

COM Component to Use with Microsoft Excel
To distribute a COM component for Excel to a development machine, create a
package that includes the following files.

Software Module Description

componentname_projectversion.dll Compiled component.

4-7

http://www.mathworks.com

4 Deployment Process

Software Module Description

MCRInstaller.exe Self-extracting MATLAB
Compiler Runtime library
utility; platform-dependent file
that must correspond to the end
user’s platform.

MCRInstaller.exe installs the
MATLAB Compiler Runtime
(MCR), which users of your
component need to install on
the target machine once per
release.

*.xla Any user-created Excel
add-in files found in the
<projectdir>\distrib folder

Ensuring Memory for Deployed Applications
If you are having trouble obtaining memory for your deployed application,
use MATLAB Memory Shielding for deployed applications to ensure a
maximum amount of contiguous allocated memory. See “Reserving Memory
for Deployed Applications with MATLAB Memory Shielding” on page 4-38
for more information.

4-8

Deploying to End Users

Deploying to End Users

In this section...

“Steps by the Programmer to Deploy to End Users” on page 4-9

“What Software Does the End User Need?” on page 4-13

“Using Relative Paths with Project Files” on page 4-16

“Porting Generated Code to a Different Platform” on page 4-16

“Extracting a CTF Archive Without Executing the Component” on page 4-17

“Dependency Analysis Function (depfun) and User Interaction with the
Compilation Path” on page 4-17

“Ensuring Memory for Deployed Applications” on page 4-20

Steps by the Programmer to Deploy to End Users

Note MCRInstaller.exe has obsoleted the need for the function buildmcr
or the creation of MCRInstaller.zip. See “Replacement of MCRInstaller.zip
and BUILDMCR Functionality” on page 1-19 for more details including
complete file paths to all install programs.

For an end user to run an application or use a library that contains compiled
M-code, there are two sets of tasks. Some tasks are for the programmer who
developed the application or library, and some tasks are for the end user.

1 Create a package that contains the software needed at run time. See “What
Software Does a Programmer Need?” on page 4-4 for more details.

4-9

4 Deployment Process

Note The package needed for end users must include the .ctf file, which
includes all the files in your preferences folder. Thus, you should make sure
that you do not have files in your preferences folder that you do not want to
expose to end users. MATLAB preferences set at compile time are inherited
by a compiled application. Preferences set by a compiled application do not
affect the MATLAB preferences, and preferences set in MATLAB do not
affect a compiled application until that application is recompiled.

The preferences folder is as follows:

• $HOME/.matlab/current_release on UNIX

• system root\profiles\user\application data\mathworks\
matlab\current_release on Windows

The folder will be stored in the CTF archive in a folder with a generated
name, such as:

mwapplication_mcr/myapplication_7CBEDC3E1DB3D462C18914C13CBFA649.

Caution MATLAB does not save your preferences folder until you exit
MATLAB. Therefore, if you change your MATLAB preferences, stop
and restart MATLAB before attempting to recompile using your new
preferences.

4-10

Deploying to End Users

Note The package needed for end users must include the .ctf file, which
includes all the files in your preferences folder. Thus, you should make sure
that you do not have files in your preferences folder that you do not want to
expose to end users. MATLAB preferences set at compile time are inherited
by a compiled application. Preferences set by a compiled application do not
affect the MATLAB preferences, and preferences set in MATLAB do not
affect a compiled application until that application is recompiled.

The preferences folder is as follows:

• $HOME/.matlab/current_release on UNIX

• system root\profiles\user\application data\mathworks\
matlab\current_release on Windows

The folder will be stored in the CTF archive in a folder with a generated
name, such as:

mwapplication_mcr/myapplication_7CBEDC3E1DB3D462C18914C13CBFA649.

Caution MATLAB does not save your preferences folder until you exit
MATLAB. Therefore, if you change your MATLAB preferences, stop
and restart MATLAB before attempting to recompile using your new
preferences.

2 Write instructions for the end user. See “Steps by the End User” on page
4-11.

3 Distribute the package to your end user, along with the instructions.

Steps by the End User

1 Open the package containing the software needed at run time.

2 Run MCRInstaller once on the target machine, that is, the machine where
you want to run the application or library. The MCRInstaller opens a

4-11

4 Deployment Process

command window and begins preparation for the installation. See “Using
the MCR Installer GUI” on page 4-12.

3 If you are deploying a Java application to end users, they must set the
class path on the target machine.

Note for Windows® Applications You must have administrative privileges
to install the MCR on a target machine since it modifies both the system
registry and the system path.

Running the MCRInstaller after the MCR has been set up on the target
machine requires only user-level privileges.

Using the MCR Installer GUI

1 When the MCR Installer wizard appears, click Next to begin the
installation. Click Next to continue.

2 In the Select Installation Folder dialog box, specify where you want to
install the MCR and whether you want to install the MCR for just yourself
or others. Click Next to continue.

Note The Install MATLAB Compiler Runtime for yourself, or for
anyone who uses this computer option is not implemented for this
release. The current default is Everyone.

3 Confirm your selections by clicking Next.

The installation begins. The process takes some time due to the quantity of
files that are installed.

The MCRInstaller automatically:

• Copies the necessary files to the target folder you specified.

• Registers the components as needed.

4-12

Deploying to End Users

• Updates the system path to point to the MCR binary folder, which is
<target_directory>/<version>/runtime/win32|win64.

4 When the installation completes, click Close on the Installation Completed
dialog box to exit.

What Software Does the End User Need?
The software required by end users depends on which of the following kinds
of software is to be run by the user:

• “Standalone Compiled Application That Accesses Shared Library” on page
4-13

• “.NET Application” on page 4-14

• “COM Application” on page 4-14

• “Java Application” on page 4-15

• “Microsoft® Excel Add-In” on page 4-15

Standalone Compiled Application That Accesses Shared Library
To distribute a shared library created with MATLAB Compiler to end users,
create a package that includes the following files.

Component Description

MCRInstaller.exe
(Windows)

Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform.

4-13

4 Deployment Process

Component Description

matrixdriver.exe
(Windows)

matrixdriver
(UNIX)

Application

libmatrix Shared library; extension varies by platform.
Extensions are:

• Windows — .dll

• Solaris, Linux, Linux x86-64 — .so

• Mac OS X — .dylib

.NET Application
To distribute a .NET application that uses components created with MATLAB
Builder NE, create a package that includes the following files.

Software Module Description

componentName.xml Documentation files

componentName.pdb
(if Debug option is
selected)

Program Database File, which contains debugging
information

componentName.dll Component assembly file

MCRInstaller.exe MCR Installer (if not already installed on the
target machine)

application.exe Application

COM Application
To distribute a COM application that uses components created with MATLAB
Builder NE or MATLAB Builder EX, create a package that includes the
following files.

4-14

Deploying to End Users

Software Module Description

componentname.ctf Component Technology File (ctf) archive.
This is a platform-dependent file that must
correspond to the end user’s platform.

componentname
_version.dll

Component that contains compiled M-code

_install.bat Script run by the self-extracting executable

MCRInstaller.exe Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.

MCRInstaller.exe installs MATLAB
Compiler Runtime (MCR), which users of
your component need to install on the target
machine once per release.

application.exe Application

Java Application
To distribute a Java application created with MATLAB Builder JA, create
a componentname.jar file. To deploy the application on computers without
MATLAB, you must include the MCR when creating your Java component.

Microsoft Excel Add-In
To distribute an Excel add-in created with MATLAB Builder EX, create a
package that includes the following files.

Software Module Description

componentname
_version.dll

Component that contains compiled M-code

_install.bat Script run by the self-extracting executable

4-15

4 Deployment Process

Software Module Description

MCRInstaller.exe Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform

*.xla Any Excel add-in files found in
projectdirectory\distrib

Using Relative Paths with Project Files
Project files now support the use of relative paths as of R2007b of MATLAB
Compiler, enabling you to share a single project file for convenient deployment
over the network. Simply share your project folder and use relative paths to
define your project location to your distributed computers.

Porting Generated Code to a Different Platform
You can distribute an application generated by MATLAB Compiler to any
target machine that has the same operating system as the machine on
which the application was compiled. For example, if you want to deploy an
application to a Windows machine, you must use the Windows version of
MATLAB Compiler to build the application on a Windows machine.

Note Since binary formats are different on each platform, the components
generated by MATLAB Compiler cannot be moved from platform to platform
as is.

To deploy an application to a machine with an operating system different from
the machine used to develop the application, you must rebuild the application
on the desired targeted platform. For example, if you want to deploy a
previous application developed on a Windows machine to a Linux machine,
you must use MATLAB Compiler on a Linux machine and completely rebuild
the application. You must have a valid MATLAB Compiler license on both
platforms to do this.

4-16

Deploying to End Users

Extracting a CTF Archive Without Executing the
Component
CTF archives contain content (M-files and MEX-files) that need to be
extracted from the archive before they can be executed. In order to extract the
archive you must override the default CTF embedding option (see “Overriding
Default CTF Archive Embedding Using the MCR Component Cache” on page
5-20). To do this, ensure that you compile your component with the “-C Do
Not Embed CTF Archive by Default” on page 12-30 option.

The CTF archive automatically expands the first time you run a MATLAB
Compiler-based component (a MATLAB Compiler based standalone
application or an application that calls a MATLAB Compiler-based shared
library, COM, or .NET component).

To expand an archive without running the application, you can use
the extractCTF (.exe on Windows) standalone utility provided in the
matlabroot/toolbox/compiler/deploy/arch folder, where arch is your
system architecture, Windows = win32|win64, Linux = glnx86, Solaris =
sol64, x86-64 = glnxa64, and Mac OS X = mac. This utility takes the CTF
archive as input and expands it into the folder in which it resides. For
example, this command expands hello.ctf into the folder where it resides:

extractCTF hello.ctf

The archive expands into a folder called hello_mcr. In general, the name of
the folder containing the expanded archive is <componentname>_mcr, where
componentname is the name of the CTF archive without the extension.

Note To run extractCTF from any folder, you must add
matlabroot/toolbox/compiler/deploy/arch to your PATH environment
variable. Run extractCTF.exe from a system prompt. If you run it from
MATLAB, be sure to use the bang (!) operator.

Dependency Analysis Function (depfun) and User
Interaction with the Compilation Path
MATLAB Compiler uses a dependency analysis function (depfun) to
determine the list of necessary files to include in the CTF package. In some

4-17

4 Deployment Process

cases, this process includes an excessive number of files, for example, when
MATLAB object classes are included in the compilation and it cannot resolve
overloaded methods at compile time. The dependency analysis is an iterative
process that also processes include/exclude information on each pass.
Consequently, this process can lead to very large CTF archives resulting in
long compilation times for relatively small applications.

depfun searches for “executable” content such as:

• M-files

• P-files

• Java classes and .jar files

• .fig files

• MEX-files and dependent binaries

depfun does not search for data files of any kind. You must manually include
data files.

M-files are encrypted by depfun, and depfun creates authorization files for
each MEX-file. This file guards against MEX-files of the same name (but of
different functionality) being placed into exploded CTF folders.

The most effective way to reduce the number of files is to constrain the
MATLAB path that depfun uses at compile time. MATLAB Compiler includes
features that enable you to manipulate the path. Currently, there are three
ways to interact with the compilation path:

• addpath and rmpath in MATLAB

• Passing -I <directory> on the mcc command line

• Passing -N and -p folders on the mcc command line

addpath and rmpath in MATLAB
If you run MATLAB Compiler from the MATLAB prompt, you can use the
addpath and rmpath commands to modify the MATLAB path before doing a
compilation. There are two disadvantages:

4-18

Deploying to End Users

• The path is modified for the current MATLAB session only.

• If MATLAB Compiler is run outside of MATLAB, this doesn’t work unless a
savepath is done in MATLAB.

Note The path is also modified for any interactive work you are doing in
the MATLAB environment as well.

Passing -I <directory> on the Command Line
You can use the -I option to add a folder to the beginning of the list of paths to
use for the current compilation. This feature is useful when you are compiling
files that are in folders currently not on the MATLAB path.

Passing -N and -p <directory> on the Command Line
There are two MATLAB Compiler options that provide more detailed
manipulation of the path. This feature acts like a “filter” applied to the
MATLAB path for a given compilation. The first option is -N. Passing -N on
the mcc command line effectively clears the path of all folders except the
following core folders (this list is subject to change over time):

• matlabroot/toolbox/matlab

• matlabroot/toolbox/local

• matlabroot/toolbox/compiler/deploy

• matlabroot/toolbox/compiler

It also retains all subfolders of the above list that appear on the MATLAB
path at compile time. Including -N on the command line allows you to
replace folders from the original path, while retaining the relative ordering
of the included folders. All subfolders of the included folders that appear
on the original path are also included. In addition, the -N option retains
all folders that the user has included on the path that are not under
matlabroot/toolbox.

4-19

4 Deployment Process

Use the -p option to add a folder to the compilation path in an order-sensitive
context, i.e., the same order in which they are found on your MATLAB path.
The syntax is

p <directory>

where <directory> is the folder to be included. If <directory> is not an
absolute path, it is assumed to be under the current working folder. The rules
for how these folders are included are

• If a folder is included with -p that is on the original MATLAB path, the
folder and all its subfolders that appear on the original path are added to
the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB path,
that folder is not included in the compilation. (You can use -I to add it.)

• If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the folder
is added to the head of the path, as it normally would be with -I.

Note The -p option requires the -N option on the mcc command line.

Ensuring Memory for Deployed Applications
If you are having trouble obtaining memory for your deployed application,
use MATLAB Memory Shielding for deployed applications to ensure a
maximum amount of contiguous allocated memory. See “Reserving Memory
for Deployed Applications with MATLAB Memory Shielding” on page 4-38
for more information.

4-20

Working with the MCR

Working with the MCR

In this section...

“Understanding the MCR” on page 4-21

“Installing the MCR and MATLAB on the Same Machine” on page 4-22

“Installing Multiple MCRs on One Machine” on page 4-24

“Retrieving MCR Attributes” on page 4-24

“Improving Data Access Using the MCR User Data Interface” on page 4-26

“Displaying MCR Initialization Start-Up and Completion Messages For
Users” on page 4-33

Understanding the MCR
MATLAB Compiler was designed to work with a large range of applications
that use the MATLAB programming language. Because of this, run-time
libraries are large.

If you do not have MATLAB installed on the target machine and you want
to run components created by MATLAB Compiler , you still need to install
the MCR on the target machine, whether you are a developer or end user.
You have to install the MCR only once. There is no way to distribute your
application with any subset of the files that are installed by the MCRInstaller.

You can install the MCR by running MCRInstaller.exe.

On platforms other than Windows, you must also set paths and environment
variables. See “Directories Required for Run-Time Deployment” on page 10-5
for more information about these settings.

4-21

4 Deployment Process

Note The MCR is version-specific.

You must run your applications with the version of the MCR associated with
the version of MATLAB Compiler with which it was created. For example,
if you compiled an application using version 4.10 (R2009a) of MATLAB
Compiler, users who do not have MATLAB installed must have version 7.10 of
the MCR installed. Use mcrversion to return the version number of the MCR.

Note If you are deploying .NET component applications to programmers
or end users, make sure to tell them to install .NET Framework before
installing the MCR. The MCRinstaller.exe must detect the presence of .NET
Framework on a system for it to install MCR .NET support. Alternatively,
you can package .NET Framework with the component installer that you
provide to them as part of your deployment package.

Note MCRInstaller.exe has obsoleted the need for the function buildmcr
or the creation of MCRInstaller.zip. See “Replacement of MCRInstaller.zip
and BUILDMCR Functionality” on page 1-19 for more details including
complete file paths to all install programs.

See “Deploying to End Users” on page 4-9 for more information about the
general steps for installing the MCR as part of the deployment process.

See also “Using MCR Installer Command Line Options” on page 10-9 for
more information.

Installing the MCR and MATLAB on the Same Machine
You do not need to install the MCR on your machine if your machine has
both MATLAB and MATLAB Compiler installed. The version of MATLAB
should be the same as the version of MATLAB that was used to create the
deployed component.

4-22

Working with the MCR

Caution There is a limitation regarding folders on your path. If the
target machine has a MATLAB installation, the <mcr_root> folders must
be first on the path to run the deployed application. To run MATLAB, the
matlabroot folders must be first on the path. This restriction only applies
to configurations involving an installed MCR and an installed MATLAB on
the same machine.

Modifying the Path
If you install the MCR on a machine that already has MATLAB on it, you
must adjust the library path according to your needs.

Windows. To run deployed components against the MCR install,
mcr_root\ver\runtime\win32|win64 must appear on your system path
before matlabroot\runtime\win32|win64.

If mcr_root\ver\runtime\arch appears first on the compiled application
path, the application uses the files in the MCR install area.

If matlabroot\runtime\arch appears first on the compiled application path,
the application uses the files in the MATLAB Compiler installation area.

UNIX. To run deployed components against the MCR install, on Linux,
Linux x86-64, or Solaris, the <mcr_root>/runtime/<arch> folder must
appear on your LD_LIBRARY_PATH before matlabroot/runtime/<arch>,
and XAPPLRESDIR should point to <mcr_root>/X11/app-defaults. See
“Directories Required for Run-Time Deployment” on page 10-5 for the
platform-specific commands.

To run deployed components on Mac OS X, the <mcr_root>/runtime folder
must appear on your DYLD_LIBRARY_PATH before matlabroot/runtime, and
XAPPLRESDIR should point to <mcr_root>/X11/app-defaults.

To run MATLAB on Mac OS X or Intel® Mac, matlabroot/runtime must
appear on your DYLD_LIBRARY_PATH before the <mcr_root>/bin folder, and
XAPPLRESDIR should point to matlabroot/X11/app-defaults.

4-23

4 Deployment Process

Installing Multiple MCRs on One Machine
MCRInstaller supports the installation of multiple versions of the MCR on a
target machine. This allows applications compiled with different versions of
the MCR to execute side by side on the same machine.

If you do not want multiple MCR versions on the target machine, you can
remove the unwanted ones. On Windows, run Add or Remove Programs
from the Control Panel to remove any of the previous versions. On UNIX, you
manually delete the unwanted MCR. You can remove unwanted versions
before or after installation of a more recent version of the MCR, as versions
can be installed or removed in any order.

Note for Mac OS® X Users Installing multiple versions of the MCR on the
same machine is not supported on Mac OS X. When you receive a new version
of MATLAB, you must recompile and redeploy all of your applications and
components. Also, when you install a new MCR onto a target machine, you
must delete the old version of the MCR and install the new one. You can only
have one version of the MCR on the target machine.

Deploying a Recompiled Application
Always run your compiled applications with the version of the MCR that
corresponds to the MATLAB version with which your application was built. If
you upgrade your MATLAB Compiler software on your development machine
and distribute the recompiled application to your users, you should also
distribute the corresponding version of the MCR. Users should upgrade their
MCR to the new version. If users need to maintain multiple versions of the
MCR on their systems, refer to “Installing Multiple MCRs on One Machine”
on page 4-24 for more information.

Retrieving MCR Attributes
Use these new functions to return data about MCR state when working with
shared libraries (this does not apply to standalone applications).

4-24

Working with the MCR

Function and Signature When to Use Return Value

bool
mclIsMCRInitialized()

Use mclIsMCRInitialized()
to determine whether or not
the MCR has been properly
initialized.

Boolean (true or false).
Returns true if MCR is already
initialized, else returns false.

bool mclIsJVMEnabled() Use mclIsJVMEnabled() to
determine if the MCR was
launched with an instance of a
Java Virtual Machine (JVM).

Boolean (true or false).
Returns true if MCR is
launched with a JVM instance,
else returns false.

const char*
mclGetLogFileName()

Use mclGetLogFileName() to
retrieve the name of the log
file used by the MCR

Character string representing
log file name used by MCR

bool mclIsNoDisplaySet() Use mclIsNoDisplaySet()
to determine if -nodisplay
option is enabled.

Boolean (true or false).
Returns true if -nodisplay is
enabled, else returns false.

Note false is always
returned on Windows systems
since the -nodisplay option
is not supported on Windows
systems.

Caution When running on
Mac, if -nodisplay is used as
one of the options included in
mclInitializeApplication,
then the call to
mclInitializeApplication
must occur before calling
mclRunMain.

4-25

4 Deployment Process

Note All of these attributes have properties of write-once, read-only.

Example: Retrieving Information from MCR State

const char* options[4];
options[0] = "-logfile";
options[1] = "logfile.txt";
options[2] = "-nojvm";
options[3] = "-nodisplay";
if(!mclInitializeApplication(options,4))
{

fprintf(stderr,
"Could not initialize the application.\n");

return -1;
}
printf("MCR initialized : %d\n", mclIsMCRInitialized());
printf("JVM initialized : %d\n", mclIsJVMEnabled());
printf("Logfile name : %s\n", mclGetLogFileName());
printf("nodisplay set : %d\n", mclIsNoDisplaySet());
fflush(stdout);

Improving Data Access Using the MCR User Data
Interface
The MCR User Data Interface lets you easily access MCR data. It allows
keys and values to be passed between an MCR instance, the M-code running
on the MCR, and the wrapper code that created the MCR. Through calls
to the MCR User Data Interface API, you access MCR data by creating a
per-MCR-instance associative array of mxArrays, consisting of a mapping
from string keys to mxArray values. Reasons for doing this include, but are
not limited to the following:

• You need to supply run-time configuration information to a client running
an application created with the Parallel Computing Toolbox. You supply
and change configuration information on a per-execution basis. For
example, two instances of the same application may run simultaneously
with different configuration files. See “Deploying Applications Created
Using Parallel Computing Toolbox” on page 4-33 for more information.

4-26

Working with the MCR

• You want to set up a global workspace, a global variable or variables that
MATLAB and your client can access.

• You want to store the state of any variable or group of variables.

The API consists of:

• Two MATLAB M-functions callable from within deployed application
M-code

• Four external C functions callable from within deployed application
wrapper code

Note The M-functions are available to other modules since they are native to
MATLAB. These built-in functions are implemented in the MCLMCR module,
which lives in the standalone folder.

For implementations using .NET components, Java components, or COM
components with Excel, see the MATLAB Builder NE User’s Guide, MATLAB
Builder JA User’s Guide, andMATLAB Builder EX User’s Guide, respectively.

MATLAB Functions
Use the M-language functions getmcruserdata and setmcruserdata from
deployed M applications. They are loaded by default only in applications
created with the MATLAB Compiler or builder products. See Chapter 12,
“Functions — Alphabetical List”, for more information.

Caution These functions will produce an Unknown function error when
called in MATLAB if the MCLMCR module cannot be located. This can
be avoided by calling isdeployed before calling getmcruserdata and
setmcruserdata. For more information about the isdeployed function, see the
isdeployed reference page.

4-27

4 Deployment Process

External C Functions
Use the following C functions in deployed C/C++ applications. See Chapter
12, “Functions — Alphabetical List” for more information.

• libnameGetMcrID

• mclSetMCRUserData

• mclGetMCRUserData

• mclSetCmdLineUserData

Setting MCR Data for Standalone Executables
MCR data can be set for a standalone executable with the -mcruserdata
command line argument.

The following example demonstrates how to set MCR user data for use with a
Parallel Computing Toolbox configuration .mat file:

parallelapp.exe -mcruserdata
ParallelConfigurationFile:config.mat

The argument following -mcruserdata is interpreted as a key/value MCR
user data pair, where the colon separates the key from the value. The
standalone executable accesses this data by using getmcruserdata.

Note A compiled application should set mcruserdata
ParallelConfigurationFile before calling any Parallel Computing Toolbox™
code. Once this code has been called, setting ParallelConfigurationFile to
point to a different file has no effect.

Setting and Retrieving MCR Data for Shared Libraries
As mentioned in “Improving Data Access Using the MCR User Data Interface”
on page 4-26, there are many possible scenarios for working with MCR Data.
The most general scenario involves setting the MCR with specific data for
later retrieval, as follows:

4-28

Working with the MCR

1 Outside the scope of your main code, use libnameGetMcrID to retrieve the
key value of the MCR data you want to update.

2 In your code, Include the MCR header file and the library header generated
by MATLAB Compiler.

3 Properly initialize your application using mclInitializeApplication.

4 After creating your input data, write or “set” it to the MCR with
setmcruserdata or mclSetMCRUserData, as appropriate. Use
mclSetCmdLineUserData to set data from the command line.

5 After calling functions or performing other processing, retrieve the new
MCR data with getmcruserdata or mclGetMCRUserData, as appropriate.

6 Free up storage memory in work areas by disposing of unneeded arrays
with mxDestroyArray.

7 Shut down your application properly with mclTerminateApplication.

Example: MagicMatrix. This following is an end-to-end example showing
how to set and retrieve MCR data with the magicmatrix application and
the MCR User Data interface API:

Building on UNIX

mbuild -gv -output magicmatrix magicmatrix.c libmagicmatrix.so

Building on Windows

mbuild -gv -output magicmatrix magicmatrix.c libmagicmatrix.lib

Running on UNIX

% ./magicmatrix

Running on Windows

C:\> magicmatrix.exe

4-29

4 Deployment Process

Running on 64-bit Macintosh

./magicmatrix.app/Contents/MacOS/magicmatrix

magicmatrix.c

#include <stdio.h>

/* Include the MCR header file and the library specific header
* file as generated by MATLAB Compiler */

#include "libmagicmatrix.h"

/* This function is used to display a double matrix stored in
* an mxArray */

void display(const mxArray* in);

int run_main(int argc, char **argv)
{

/* Input and output parameters. For testing, keep inputValue
* and outputValue in separate arrays, so a dangling
* pointer can't
* cause a false positive.
*/

mxArray *key, *inputValue;
mxArray *outputValue = NULL;

/* Column-major 3x3 magic square. */
double data[] = {8, 3, 4, 1, 5, 9, 6, 7, 2};

/* Initialize the application */
if(!mclInitializeApplication(NULL,0))
{

fprintf(stderr,
"Could not initialize the application.\n");

return -1;
}

/* Call the library intialization routine and make sure
* that the
* library was initialized properly. */

if (!libmagicmatrixInitialize()){

4-30

Working with the MCR

fprintf(stderr,"Could not initialize the library.\n");
return -2;

}
else
{

/* Declare an array to hold the inputs */
mxArray *key = 0, *inputValue = 0;

/* Create the input data */
inputValue = mxCreateDoubleMatrix(3,3,mxREAL); /* key */
key = mxCreateString("MagicMatrix"); /* value */
memcpy(mxGetPr(inputValue), data, 9*sizeof(double));

/* Set the user data: 2 inputs, no outputs */
mlfSetmcruserdata(key, inputValue);

/* Call the library function */
mlfMagicmatrix(0, NULL, NULL);

/* Get the MCR user data - it should be different now */
mlfGetmcruserdata(1, &outputValue, key);

display(outputValue);

/* Clean up */
mxDestroyArray(outputValue); outputValue=0;

/* Call the library termination routine */
libmagicmatrixTerminate();

/* Free the memory created for the inputs */
mxDestroyArray(key); key = 0;
mxDestroyArray(inputValue); inputValue = 0;

}

/* Shut everything down */
mclTerminateApplication();
return 0;

}

4-31

4 Deployment Process

/*DISPLAY This function will display the double matrix stored
* in an mxArray.
* This function assumes that the mxArray passed as
* input contains double array.
*/

void display(const mxArray* in)
{

int i=0, j=0; /* loop index variables */
int r=0, c=0; /* variables to store the row and column
* length of the matrix */
double *data; /* variable to point to the double data
* stored within the mxArray */

/* Get the size of the matrix */
r = mxGetM(in);
c = mxGetN(in);
/* Get a pointer to the double data in mxArray */
data = mxGetPr(in);

/* Loop through the data and display the same in
* matrix format */
for(i = 0; i < c; i++){

for(j = 0; j < r; j++){
printf("%4.2f\t",data[j*c+i]);

}
printf("\n");

}
printf("\n");

}

int main()
{

mclmcrInitialize();
return mclRunMain((mclMainFcnType)run_main,0,NULL);

}

4-32

Working with the MCR

Deploying Applications Created Using Parallel Computing
Toolbox
For information about creating and exporting configurations from
Parallel Computing Toolbox applications, see “Programming with User
Configurations”.

For information about using the MCR User Data Interface see “Improving
Data Access Using the MCR User Data Interface” in the MATLAB Builder
JA, MATLAB Builder NE, and MATLAB Builder EX user guides.

For a complete working example describing how to use Parallel Computing
Toolbox with MATLAB Builder JA, see “Example: Supplying Run-Time
Configuration Information for Parallel Computing Toolbox Applications”.

Displaying MCR Initialization Start-Up and
Completion Messages For Users
You can display a console message for end users that informs them when
MCR initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB Compiler
Runtime version x.xx)

• Customize the start-up or completion message with text of your choice.
The default start-up message will also display prior to displaying your
customized start-up message.

Some examples of different ways to invoke this option follow:

This command: Displays:

mcc -R -startmsg Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx

4-33

4 Deployment Process

This command: Displays:

mcc -R -startmsg,'user
customized message'

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and user
customized message for start-up

mcc -R -completemsg,'user
customized message'

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and user
customized message for completion

mcc -R -startmsg,'user
customized message' -R
-completemsg,'user customized
message"

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and
user customized message for
both start-up and completion by
specifying -R before each option

mcc -R -startmsg,'user
customized
message',-completemsg,'user
customized message’

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and
user customized message for
both start-up and comlpetion by
specifying -R only once

4-34

Deploying a Standalone Application on a Network Drive

Deploying a Standalone Application on a Network Drive
You can deploy a compiled standalone application to a network drive so that it
can be accessed by all network users without having them install the MCR on
their individual machines.

1 On any Windows machine, execute MCRInstaller.exe to install the
MATLAB Compiler Runtime (MCR).

2 Copy the entire MCR folder (the folder where MCR is installed) onto a
network drive.

3 Copy the compiled application into a separate folder in the network
drive and add the path <mcr_root>\<ver>\runtime\<arch> to all client
machines. All network users can then execute the application.

4 Run vcredist_x86.exe on for 32-bit clients; run vcredist_x64.exe for
64-bit clients.

5 If you are using MATLAB Builder EX, register mwcomutil.dll and
mwcommgr.dll on every client machine.

If you are using MATLAB Builder NE (to create COM objects), register
mwcomutil.dll on every client machine.

To register the DLLs, at the DOS prompt enter

mwregsvr <fully_qualified_pathname\dllname.dll>

These DLLs are located in <mcr_root>\<ver>\runtime\<arch>.

Note These libraries are automatically registered on the machine on
which the installer was run.

4-35

4 Deployment Process

MATLAB Compiler Deployment Messages
To enable display of MATLAB Compiler deployment messages, see “Enabling
MATLAB Compiler Deployment Messages” in MATLAB Desktop Tools and
Development Environment.

4-36

Using MATLAB® Compiler™ Generated DLLs in Windows® Services

Using MATLAB Compiler Generated DLLs in Windows
Services

If you have a Windows service that is built using DLL files generated by
MATLAB Compiler, do the following to ensure stable performance:

1 Create a file named java.opts.

2 Add the following line to the file:

-Xrs

3 Save the file to: MCRROOT/version/runtime/win32|win64, where MCRROOT
is the installation folder of the MATLAB Compiler Runtime and version is
the MCR version (for example, v74 for MATLAB Compiler 4.4 (R2006a)).

Caution Failure to create the java.opts file using these steps may result in
unpredictable results such as premature termination of Windows services.

4-37

4 Deployment Process

Reserving Memory for Deployed Applications with
MATLAB Memory Shielding

In this section...

“What Is MATLAB Memory Shielding and When Should You Use It?” on
page 4-38

“Requirements for Using MATLAB Memory Shielding” on page 4-39

“Invoking MATLAB Memory Shielding for Your Deployed Application”
on page 4-39

What Is MATLAB Memory Shielding and When
Should You Use It?
Occasionally you encounter problems ensuring that you have the memory
needed to run deployed applications. These problems often occur when:

• Your data set is large

• You are trying to compensate for the memory limitations inherent in a
32-bit Windows system

• The computer available to you has limited resources

• Network resources are restrictive

Use MATLAB Memory Shielding to ensure that you obtain the maximum
amount of contiguous memory to run your deployed application successfully.

MATLAB Memory Shielding provides the specified level of protection of the
address space used by MATLAB. When you use this feature, it reserves
the largest contiguous block of memory available for your application after
startup.

Memory shielding works by ensuring that resources, such as DLLs, load into
locations that will not fragment the address space of the system. The feature
provides the specified amount of contiguous address space you specify, up to
the maximum available on the system.

4-38

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

For example, on a 32-bit Windows system, MATLAB defaults to memory
shielding for virtual addresses 0x50000000-0x70000000. At the point where
your application runs, the shield lowers, allowing allocation of that virtual
address space.

Note This topic describes how to invoke the shielding function for deployed
applications, not the MATLAB workspace. To learn more about invoking
memory shielding for MATLAB workspaces, see the discussion of the start-up
option matlab shieldOption in the MATLAB Function Reference Guide.

Requirements for Using MATLAB Memory Shielding
Before using MATLAB Memory Shielding for your deployed applications,
verify that you meet the following requirements:

• Your deployed application is failing because it cannot find the proper
amount of memory and not for another unrelated reason. As a best practice,
let the operating system attempt to satisfy run-time memory requests, if
possible. See “What Is MATLAB Memory Shielding and When Should
You Use It?” on page 4-38 for examples of cases where you can benefit by
using MATLAB Memory Shielding

• Your application runs on a Windows® 32-bit system. While MATLAB
Memory Shielding runs on 64-bit Windows® systems without failing, it
has no effect on your application.

• You are running with a standalone application or Windows executable.
MATLAB Memory Shielding does not work with shared libraries, .NET
components or Java components.

• You have run the MCR Installer on your system to get the MATLAB
Component Runtime (MCR). The memory shielding feature is installed
with the MCR.

Invoking MATLAB Memory Shielding for Your
Deployed Application
Invoke memory shielding by using either the command-line syntax or the
GUI. Each approach has appropriate uses based on your specific memory
reservation needs.

4-39

4 Deployment Process

Using the Command Line
Use the command line if you want to invoke memory shielding only with the
various shield_level values (not specific address ranges).

The base command-line syntax is:

MemShieldStarter [-help] [-gui] [-shield shield_level]
fully-qualified_application_path [user-defined_application_arguments]

1 Run your application using the default level of memory shielding. Use
the command:

MemShieldStarter
fully-qualified_application_path [user-defined_application_arguments]

2 If your application runs successfully, try the next highest shield level to
guarantee more contiguous memory, if needed.

• A higher level of protection does not always provide a larger size block
and can occasionally cause start-up problems. Therefore, start with a
lower level of protection and be conservative when raising the level of
protection.

• Use only memory shielding levels that guarantee a successful execution
of your application. See the table MemShieldStarter Options on page
4-41 for more details on which shield options to choose.

• Contact your system administrator for further advice on successfully
running your application.

3 If your application fails to start, disable memory shielding:

a To disable memory shielding after you have enabled it, run the following
command:

MemShieldStarter -shield none
fully-qualified_application_path [user-defined_application_arguments]

b Contact your system administrator for further advice on successfully
running your application.

4-40

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

MemShieldStarter Options

Option Description

-help Invokes help for MemShieldStarter

-gui Starts the Windows graphical interface for
MemShieldStarter.exe. See “Using the GUI”
on page 4-42 for more details.

-shield shield_level See “Shield Level Options” on page 4-41.

fully-qualified_application_path The fully qualified path to your user application

user-defined_application_arguments Arguments passed to your user application.
MemShieldStarter.exe only passes user
arguments. It does not alter them.

Shield Level Options. shield_level options are as follows:

• none— This value completely disables memory shielding. Use this value
if your application fails to start successfully with the default (-shield
minimum) option.

• minimum— The option defaults to this setting. Minimum shielding protects
the range 0x50000000 to 0x70000000 during startup until just before
processing matlabrc. This value ensures at least approximately 500 MB
of contiguous memory available up to this point.

When experimenting with a shielding level. start with minimum. To use the
default, do not specify a shield option upon startup. If your application fails
to start successfully using minimum, use -shield none. If your application
starts successfully with the default value for shield_level, try using the
-shield medium option to guarantee more memory.

• medium — This value protects the same range as minimum, 0x50000000
to 0x70000000, but protects the range until just after startup processes
matlabrc. It ensures that there is at least approximately 500 MB of
contiguous memory up to this point. If MATLAB fails to start successfully
with the -shield medium option, use the default option (-shield
minimum). If MATLAB starts successfully with the -shield medium option

4-41

4 Deployment Process

and you want to try to ensure an even larger contiguous block after startup,
try using the -shield maximum option.

• maximum — This value protects the maximum range, which can be up
to approximately 1.5 GB, until just after startup processes matlabrc.
The default memory shielding range for maximum covers 0x10000000 to
0x78000000. If MATLAB fails to start successfully with the -shield
maximum option, use the -shield medium option.

Note The shielding range may vary in various locales. Contact your
system administrator for further details.

Using the GUI
Use the graphical interface to invoke memory shielding for specific address
ranges as well as with specific shield_level values.

1 To start the GUI, run the following at the system command prompt:

MemShieldStarter.exe -gui

The Memory Shielding Starter dialog box opens:

4-42

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

2 Enter the appropriate values as described in MemShieldStarter Options on
page 4-41. Use the default Memory shielding level minimum.

You can specify a specific address range in the Memory address range
fields. Specifying a range override the default 0x50000000 through
0x70000000 address range values required for the shield_level minimum,
for example.

3 Click Run.

4 If your application runs successfully, try the next highest shield level to
guarantee more contiguous memory, if needed.

• A higher level of protection does not always provide a larger size block
and can occasionally cause startup problems. Therefore, start with a
lower level of protection and use only what is necessary to guarantee a
successful execution of your application.

• See the table MemShieldStarter Options on page 4-41 for more details
on appropriate shield options for various situations.

4-43

4 Deployment Process

4-44

5

Compiler Commands

This chapter describes mcc, which is the command that invokes MATLAB
Compiler.

• “Command Overview” on page 5-2

• “Using Macros to Simplify Compilation” on page 5-5

• “Using Path Names” on page 5-8

• “Using Bundle Files” on page 5-9

• “Using Wrapper Files” on page 5-11

• “Interfacing M-Code to C/C++ Code” on page 5-14

• “Overriding Default CTF Archive Embedding Using the MCR Component
Cache” on page 5-20

• “Using Pragmas” on page 5-22

• “Using mxArray” on page 5-24

• “Script Files” on page 5-25

• “Compiler Tips” on page 5-27

5 Compiler Commands

Command Overview

In this section...

“Compiler Options” on page 5-2

“Combining Options” on page 5-2

“Conflicting Options on the Command Line” on page 5-3

“Using File Extensions” on page 5-3

Compiler Options
mcc is the MATLAB command that invokes MATLAB Compiler. You can issue
the mcc command either from the MATLAB command prompt (MATLAB
mode) or the DOS or UNIX command line (standalone mode).

You may specify one or more MATLAB Compiler option flags to mcc. Most
option flags have a one-letter name. You can list options separately on the
command line, for example,

mcc -m -g myfun

Macros are MathWorks supplied MATLAB Compiler options that simplify
the more common compilation tasks. Instead of manually grouping several
options together to perform a particular type of compilation, you can use a
simple macro option. You can always use individual options to customize the
compilation process to satisfy your particular needs. For more information on
macros, see “Using Macros to Simplify Compilation” on page 5-5.

Combining Options
You can group options that do not take arguments by preceding the list of
option flags with a single dash (-), for example:

mcc -mg myfun

Options that take arguments cannot be combined unless you place the option
with its arguments last in the list. For example, these formats are valid:

mcc -v -W main -T link:exe myfun % Options listed separately

5-2

Command Overview

mcc -vW main -T link:exe myfun % Options combined

This format is not valid:

mcc -Wv main -T link:exe myfun

In cases where you have more than one option that takes arguments, you can
only include one of those options in a combined list and that option must be
last. You can place multiple combined lists on the mcc command line.

If you include any C or C++ file names on the mcc command line, the files are
passed directly to mbuild, along with any MATLAB Compiler generated C
or C++ files.

Conflicting Options on the Command Line
If you use conflicting options, MATLAB Compiler resolves them from left to
right, with the rightmost option taking precedence. For example, using the
equivalencies in “Macro Options” on page 5-5,

mcc -m -W none test.m

is equivalent to:

mcc -W main -T link:exe -W none test.m

In this example, there are two conflicting -W options. After working from
left to right, MATLAB Compiler determines that the rightmost option takes
precedence, namely, -W none, and the product does not generate a wrapper.

Caution Macros and regular options may both affect the same settings and
may therefore override each other depending on their order in the command
line.

Using File Extensions
The valid, recommended file extension for a file submitted to MATLAB
Compiler is .m. Always specify the complete file name, including the .m

5-3

5 Compiler Commands

extension, when compiling with mcc or you may encounter unpredictable
results.

Note P-files (.p) have precedence over M-files, therefore if both P-files and
M-files reside in a folder, and a file name is specified without an extension,
the P-file will be selected.

5-4

Using Macros to Simplify Compilation

Using Macros to Simplify Compilation

In this section...

“Macro Options” on page 5-5

“Working With Macro Options” on page 5-5

Macro Options
MATLAB Compiler, through its exhaustive set of options, gives you access
to the tools you need to do your job. If you want a simplified approach to
compilation, you can use one simple option, i.e., macro, that allows you to
quickly accomplish basic compilation tasks. Macros let you group several
options together to perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish
a standard compilation and the multioption alternative.

Macro
Option Bundle File Creates

Option Equivalence
Function Wrapper
| Output Stage
| |

-l macro_option_l Library -W lib -T link:lib

-m macro_option_m Standalone C application -W main -T link:exe

Working With Macro Options
The -m option tells MATLAB Compiler to produce a standalone C application.
The -m macro is equivalent to the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information
that they provide to MATLAB Compiler.

5-5

5 Compiler Commands

-m Macro

Option Function

-W main Produce a wrapper file suitable for a standalone
application.

-T link:exe Create an executable link as the output.

Changing Macro Options
You can change the meaning of a macro option by editing the corresponding
macro_option bundle file in matlabroot/toolbox/compiler/bundles. For
example, to change the -m macro, edit the file macro_option_m in the bundles
folder.

Note This changes the meaning of -m for all users of this MATLAB
installation.

Specifying Default Macro Options
As the MCCSTARTUP functionality has been replaced by bundle file technology,
the macro_default file that resides in toolbox\compiler\bundles can be
used to specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

5-6

Using Macros to Simplify Compilation

mcc -v -W 'lib:libfoo' -T link:lib foo.m

5-7

5 Compiler Commands

Using Path Names
If you specify a full path name to an M-file on the mcc command line,
MATLAB Compiler

1 Breaks the full name into the corresponding path name and file names
(<path> and <file>).

2 Replaces the full path name in the argument list with “-I <path> <file>”.
For example,

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion.
For example, suppose you have two different M-files that are both named
myfile.m and they reside in /home/user/dir1 and /home/user/dir2. The
command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

MATLAB Compiler finds the myfile.m in dir1 and compiles it instead of the
one in dir2 because of the behavior of the -I option. If you are concerned that
this might be happening, you can specify the -v option and then see which
M-file MATLAB Compiler parses. The -v option prints the full path name to
the M-file during the dependency analysis phase.

Note MATLAB Compiler produces a warning (specified_file_mismatch) if
a file with a full path name is included on the command line and MATLAB
Compiler finds it somewhere else.

5-8

Using Bundle Files

Using Bundle Files
Bundle files provide a convenient way to group sets of MATLAB Compiler
options and recall them as needed. The syntax of the bundle file option is:

-B <filename>[:<a1>,<a2>,...,<an>]

When used on the mcc command line, the bundle option -B replaces the entire
string with the contents of the specified file. The file should contain only mcc
command-line options and corresponding arguments and/or other file names.
The file may contain other -B options.

A bundle file can include replacement parameters for MATLAB Compiler
options that accept names and version numbers. For example, there is a
bundle file for C shared libraries, csharedlib, that consists of:

-W lib:%1% -T link:lib

To invoke MATLAB Compiler to produce a C shared library using this bundle,
you can use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle file will be replaced with the corresponding
option specified to the bundle file. Use %% to include a % character. It is an
error to pass too many or too few options to the bundle file.

5-9

5 Compiler Commands

Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotes when there is more than one parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only
parameter being passed. If the example had two or more parameters, then
the quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' ...
weekday data tic calendar toc

See the following table for a list of bundle files available with MATLAB
Compiler.

Bundle File Creates Contents

cpplib C++ Library -W cpplib:<shared_library_name> -T link:lib

csharedlib C Shared Library -W lib:<shared_library_name> -T link:lib

Note Additional bundle files are available when you have a license for
products layered on MATLAB Compiler. For example, if you have a license
for MATLAB Builder NE , you can use the mcc command with bundle files
that create COM objects and .NET objects.

5-10

Using Wrapper Files

Using Wrapper Files

In this section...

“What Are Wrapper Files?” on page 5-11

“Main File Wrapper” on page 5-11

“C Library Wrapper” on page 5-12

“C++ Library Wrapper” on page 5-13

What Are Wrapper Files?
Wrapper files encapsulate, or wrap, the M-files in your application with an
interface that enables the M-files to operate in a given target environment.

To provide the required interface, the wrapper does the following:

• Performs wrapper-specific initialization and termination

• Provides the dispatching of function calls to the MCR

To specify the type of wrapper to generate, use the following syntax:

-W <type>

The following sections detail the available wrapper types.

Main File Wrapper
The -W main option generates wrappers that are suitable for building
standalone applications. These POSIX-compliant main wrappers accept
strings from the POSIX shell and return a status code. They pass these
command-line strings to the M-file function(s) as MATLAB strings. They are
meant to translate “command-like” M-files into POSIX main applications.

POSIX Main Wrapper
Consider this M-file, sample.m.

function y = sample(varargin)
varargin{:}

5-11

5 Compiler Commands

y = 0;

You can compile sample.m into a POSIX main application. If you call sample
from MATLAB, you get

sample hello world
ans =
hello

ans =
world

ans =
0

If you compile sample.m and call it from the DOS shell, you get

C:\> sample hello world

ans =
hello

ans =
world

C:\>

The difference between the MATLAB and DOS/UNIX environments is the
handling of the return value. In MATLAB, the return value is handled by
printing its value; in the DOS/UNIX shell, the return value is handled as
the return status code. When you compile a function into a POSIX main
application, the return status is set to 0 if the compiled M-file is executed
without errors and is nonzero if there are errors.

C Library Wrapper
The -l option, or its equivalent -W lib:libname, produces a C library
wrapper file. This option produces a shared library from an arbitrary set of
M-files. The generated header file contains a C function declaration for each

5-12

Using Wrapper Files

of the compiled M-functions. The export list contains the set of symbols that
are exported from a C shared library.

Note You must generate a library wrapper file when calling any MATLAB
Compiler generated code from a larger application.

C++ Library Wrapper
The -W cpplib:libname option produces the C++ library wrapper file. This
option allows the inclusion of an arbitrary set of M-files into a library. The
generated header file contains all of the entry points for all of the compiled
M-functions.

Note You must generate a library wrapper file when calling any MATLAB
Compiler generated code from a larger application.

5-13

5 Compiler Commands

Interfacing M-Code to C/C++ Code

In this section...

“Overview” on page 5-14

“Code Proper Return Types From C and C++ Methods” on page 5-14

“C Example” on page 5-14

“C++ Example” on page 5-16

Overview
MATLAB Compiler supports calling arbitrary C/C++ functions from your
M-code. To use this feature, provide an M-function stub that determines how
the code will behave in M, and then provide an implementation of the body
of the function in C or C++.

Code Proper Return Types From C and C++ Methods
When coding, keep in mind that LCC compilers can be more strict in enforcing
bool return types from C and void returns from C++ than Microsoft
compilers. To avoid potential problems, ensure all C methods you write (and
reference from within M) return a bool return type indicating the status,
and any C++ methods return void.

C Example
Suppose you have a C function that reads data from a measurement device.
In M-code, you want to simulate the device by providing a sine wave output,
so you provide a function that returns the measurement obtained from the
device. This C function, measure_from_device(), returns a double, which
is the current measurement.

To replace the implementation of the collect_one function with a C
implementation, use the %#external pragma:

1 Compile the MATLAB code with the %#external pragma once to generate
the header file function_name_external.h, where function_name is the
name of the initial M-function containing the %#external pragma. This

5-14

Interfacing M-Code to C/C++ Code

header file will contain the extern declaration of the function that you
must provide. This function must conform to the same interface as code
generated by MATLAB Compiler.

MATLAB Compiler will generate the interface for any functions
that contain the %#external pragma into a separate file called
function_name_external.h. The C or C++ file generated by MATLAB
Compiler will include this header file to get the declaration of the function
being provided.

Place the pragma in the collect.m local function as follows:

function collect

y = zeros(1,100); % pre-allocate the matrix
for i = 1:100

y(i) = collect_one;
end

function y = collect_one
%#EXTERNAL
persistent t;

if (isempty(t))
t = 0;

else
t = t+0.05;

end
y = sin(t);

2 Compile the collect function.

When this file is compiled, MATLAB Compiler creates the additional
header file collect_one_external.h, which contains the interface
between MATLAB Compiler generated code and your code. In this
example, it would contain:

extern bool mlxCollect_one(int nlhs, mxArray *plhs[],
int nrhs, mxArray *prhs[]);

5-15

5 Compiler Commands

3 It is recommended that you include this header file when defining the
function. This function can be implemented in this C file, measure.c, using
the measure_from_device() function.

#include "collect_one_external.h"
#include <math.h>

extern double measure_from_device(void);
bool mlxCollect_one(int nlhs, mxArray *plhs[],

int nrhs, mxArray *prhs[])
{

plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[0])) = measure_from_device();

}

double measure_from_device(void)
{

static double t = 0.0;
t = t + 0.05;
return sin(t);

}

To generate the application, use

mcc -m collect.m measure.c

C++ Example
Suppose you have a C function that reads data from a measurement device.
In M-code, you want to simulate the device by providing a sine wave output,
so you provide a function that returns the measurement obtained from the
device. For example, this C function, measure_from_device(), returns a
double, which is the current measurement.

collect.m contains the M-code for the simulation of your application.

function collect

y = zeros(1,100); % pre-allocate the matrix

5-16

Interfacing M-Code to C/C++ Code

for i = 1:100
y(i) = collect_one;

end

function y = collect_one
%#EXTERNAL
persistent t;

if (isempty(t))
t = 0;

else
t = t+0.05;

end
y = sin(t);

To replace the implementation of the collect_one function with a C
implementation, use the %#external pragma.

1 Compile the MATLAB code with the %#external pragma once to generate
the header file function_name_external.h, where function_name is the
name of the initial M-function containing the %#external pragma. This
header file will contain the extern declaration of the function that you
must provide. This function must conform to the same interface as code
generated by MATLAB Compiler.

MATLAB Compiler will generate the interface for any functions
that contain the %#external pragma into a separate file called
function_name_external.h. The C or C++ file generated by MATLAB
Compiler will include this header file to get the declaration of the function
being provided.

In this example, place the pragma in the collect_one local function.

function collect

y = zeros(1, 100); % preallocate the matrix
for i = 1:100

y(i) = collect_one;

5-17

5 Compiler Commands

end
disp (y)

function y = collect_one

%#external
persistent t;
if (isempty(t))

t = 0;
end
t = t + 0.05;
y = sin(t);

2 Compile the collect function.

When this file is compiled, MATLAB Compiler creates the additional
header file collect_one_external.h, which contains the interface
between MATLAB Compiler generated code and your code. In this
example, it would contain:

extern void mlxCollect_one(int nlhs, mxArray *plhs[],
int nrhs, mxArray *prhs[]);

3 It is recommended that you include this header file when defining the
function. This function can be implemented in this C++ file, measure.cpp,
using the measure_from_device() function.

#include "collect_one_external.h"
#include <math.h>

extern double measure_from_device(void);

void mlxCollect_one(int nlhs, mxArray *plhs[],
int nrhs, mxArray *prhs[])

{
plhs[0] = mxCreateDoubleMatrix(1,1,mxREAL);
*(mxGetPr(plhs[0])) = measure_from_device();

}

5-18

Interfacing M-Code to C/C++ Code

double measure_from_device(void)
{

static double t = 0.0;
t = t + 0.05;
return sin(t);

}

To generate the application, use

mcc -m collect.m measure.cpp

5-19

5 Compiler Commands

Overriding Default CTF Archive Embedding Using the MCR
Component Cache

As of R2008a, CTF data is automatically embedded directly in the C/C++,
main and Winmain, shared libraries and standalones by default. In order to
override this default functionality, you must compile using the option “-C Do
Not Embed CTF Archive by Default” on page 12-30.

If you do not use the mcc -C option to specify that a separate CTF file be
generated, you can add environment variables to specify various options,
such as:

• Defining the location where you want the CTF archive to be extracted

• Adding diagnostic error printing options that can be used when extracting
the CTF, for troubleshooting purposes

• Tuning the MCR component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the CTF
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

5-20

Overriding Default CTF Archive Embedding Using the MCR Component Cache

Environment Variable Purpose Notes

MCR_CACHE_VERBOSE When set, this variable prints
details about the component
cache for diagnostic reasons.
This can be very helpful
if problems are encountered
during CTF archive extraction.

Does not apply

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this
variable is 32M (megabytes).
This may, however, be changed
after you have set the variable
the first time. Edit the file
.max_size, which resides in
the file designated by running
the mcrcachedir command,
with the desired cache size
limit.

Note If you run mcc specifying conflicting wrapper and target types, the CTF
will not be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the CTF embedded in it, as if you had
specified a -C option to the command line.

5-21

5 Compiler Commands

Using Pragmas

In this section...

“Using feval” on page 5-22

“Example: Using %#function” on page 5-22

Using feval
In standalone C and C++ modes, the pragma

%#function <function_name-list>

informs MATLAB Compiler that the specified function(s) should be included
in the compilation, whether or not the MATLAB Compiler dependency
analysis detects it. Without this pragma, the MATLAB Compiler dependency
analysis will not be able to locate and compile all M-files used in your
application. This pragma adds the top-level function as well as all the
subfunctions in the file to the compilation.

You cannot use the %#function pragma to refer to functions that are not
available in M-code.

Example: Using %#function
A good coding technique involves using %#function in your code wherever
you use feval statements. This example shows how to use this technique
to help MATLAB Compiler find the appropriate files during compile time,
eliminating the need to include all the files on the command line.

function ret = mywindow(data,filterName)
%MYWINDOW Applies the window specified on the data.
%

% Get the length of the data.
N= length(data);

% List all the possible windows.
% Note the list of functions in the following function pragma is
% on a single line of code.

5-22

Using Pragmas

%#function bartlett, barthannwin, blackman, blackmanharris,
bohmanwin, chebwin, flattopwin, gausswin, hamming, hann, kaiser,
nuttallwin, parzenwin, rectwin, tukeywin, triang

window = feval(filterName,N);
% Apply the window to the data.
ret = data.*window;

5-23

5 Compiler Commands

Using mxArray
For full documentation on the mxArray API, see “MX Array Manipulation” in
MATLAB C and Fortran API Reference.

For a complete description of data types used with mxArray, see “MATLAB
Data” in MATLAB External Interfaces.

For general information on data handling, see MATLAB External Interfaces.

5-24

Script Files

Script Files

In this section...

“Converting Script M-Files to Function M-Files” on page 5-25

“Including Script Files in Deployed Applications” on page 5-26

Converting Script M-Files to Function M-Files
MATLAB provides two ways to package sequences of MATLAB commands:

• Function M-files

• Script M-files

Some things to remember about script and function M-files:

• Variables used inside function M-files are local to that function; you cannot
access these variables from the MATLAB interpreter’s workspace unless
they are passed back by the function. By contrast, variables used inside
script M-files are shared with the caller’s workspace; you can access these
variables from the MATLAB interpreter command line.

• Variables that are declared as persistent in a MEX-file may not retain their
values through multiple calls from MATLAB.

MATLAB Compiler can compile script M-files or can compile function M-files
that call scripts. You can either specify an script M-file explicitly on the mcc
command line, or you can specify function M-files that include scripts.

Converting a script into a function is usually fairly simple. To convert a script
to a function, simply add a function line at the top of the M-file.

Running this script M-file from a MATLAB session creates variables m and t
in your MATLAB workspace browser.

If desired, convert this script M-file into a function M-file by simply adding a
function header line.

function houdini(sz)

5-25

5 Compiler Commands

m = magic(sz); % Assign magic square to m.
t = m .^ 3; % Cube each element of m.
disp(t) % Display the value of t.

MATLAB Compiler can now compile houdini.m. However, because this
makes houdini a function, running the function no longer creates variables
m and t in the MATLAB workspace browser. If it is important to have m
and t accessible from the MATLAB workspace browser, you can change the
beginning of the function to

function [m,t] = houdini(sz)

The function now returns the values of m and t to its caller.

Including Script Files in Deployed Applications
Compiled applications consist of two layers of M-files. The top layer is the
interface layer and consists of those functions that are directly accessible
from C or C++.

In standalone applications, the interface layer consists of only the main
M-file. In libraries, the interface layer consists of the M-files specified on
the mcc command line.

The second layer of M-files in compiled applications includes those M-files
that are called by the functions in the top layer. You can include scripts in the
second layer, but not in the top layer.

For example, you can produce an application from the houdini.m script M-file
by writing a new M-function that calls the script, rather than converting the
script into a function.

function houdini_fcn
houdini;

To produce the houdini_fcn , which will call the houdini.m script M-file, use

mcc -m houdini_fcn

5-26

Compiler Tips

Compiler Tips

In this section...

“Calling Built-In Functions from C or C++” on page 5-27

“Calling a Function from the Command Line” on page 5-28

“Using MAT-Files in Deployed Applications” on page 5-28

“Compiling a GUI That Contains an ActiveX Control” on page 5-28

“Debugging MATLAB® Compiler Generated Executables” on page 5-29

“Deploying Applications That Call the Java Native Libraries” on page 5-29

“Locating .fig Files in Deployed Applications” on page 5-29

“Blocking Execution of a Console Application That Creates Figures and
Terminating Figures by Force” on page 5-30

“Passing Arguments to and from a Standalone Application” on page 5-31

“Using Graphical Applications in Shared Library Targets” on page 5-33

“Using the VER Function in a Compiled MATLAB Application” on page 5-33

Calling Built-In Functions from C or C++
To enable a C or C++ program to call a built-in function directly, you must
write an M-file wrapper around each built-in function you want to access
outside of MATLAB. This is necessary because there are no C callable
interfaces to built-in functions. For example, to use the magic function in a
deployed application, you can use this M-file:

function m = magicsquare(n)
%MAGICSQUARE generates a magic square matrix of size specified
% by the input parameter n.

% Copyright 2003 The MathWorks, Inc.

if (ischar(n))
n=str2num(n);

end
m = magic(n);

5-27

5 Compiler Commands

Calling a Function from the Command Line
You can make a MATLAB function into a standalone that is directly callable
from the system command line. All the arguments passed to the MATLAB
function from the system command line are strings. Two techniques to work
with these functions are:

• Modify the original MATLAB function to test each argument and convert
the strings to numbers.

• Write a wrapper MATLAB function that does this test and then calls the
original MATLAB function.

For example:

function x=foo(a, b)
if (isstr(a)), a = str2num(a), end;
if (isstr(b)), b = str2num(b), end;

% The rest of your M-code here...

You only do this if your function expects numeric input. If your function
expects strings, there is nothing to do because that’s the default from the
command line.

Using MAT-Files in Deployed Applications
To use a MAT-file in a deployed application, use the MATLAB Compiler -a
option to include the file in the CTF archive. For more information on the -a
option, see “-a Add to Archive” on page 12-27.

Compiling a GUI That Contains an ActiveX Control
When you save a GUI that contains ActiveX components, GUIDE creates a
file in the current folder for each such component. The file name consists of
the name of the GUI followed by an underscore (_) and activexn, where n
is a sequence number. For example, if the GUI is named ActiveXcontrol
then the file name would be ActiveXcontrol_activex1. The file name does
not have an extension.

5-28

Compiler Tips

If you use MATLAB Compiler mcc command to compile a GUIDE-created
GUI that contains an ActiveX component, you must use the -a option to add
the ActiveX control files that GUIDE saved in the current folder to the CTF
archive. Your command should be similar to

mcc -m mygui -a mygui_activex1

where mygui_activex1 is the name of the file. If you have more than one
such file, use a separate -a option for each file.

Debugging MATLAB Compiler Generated Executables
As of MATLAB Compiler 4, it is no longer possible to debug your entire
program using a C/C++ debugger; most of the application is M-code, which
can only be debugged in MATLAB. Instead, run your code in MATLAB and
verify that it produces the desired results. Then you can compile it. The
compiled code will produce the same results.

Deploying Applications That Call the Java Native
Libraries
If your application interacts with Java, you need to specify the search path for
native method libraries by editing librarypath.txt and deploying it.

1 Copy librarypath.txt from
matlabroot/toolbox/local/librarypath.txt.

2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MCR library archive
files are installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library
that your application’s Java code needs to load.

Locating .fig Files in Deployed Applications
MATLAB Compiler locates .fig files automatically when there is an M-file
with the same name as the .fig file in the same folder. If the .fig file does
not follow this rule, it must be added with the -a option.

5-29

5 Compiler Commands

Blocking Execution of a Console Application That
Creates Figures and Terminating Figures by Force

• “Blocking Execution of a Console Application with the
mclWaitForFiguresToDie Method” on page 5-30

• “Terminating Figures by Force with the mclKillAllFigures Method” on
page 5-31

Blocking Execution of a Console Application with the
mclWaitForFiguresToDie Method
The purpose of mclWaitForFiguresToDie is to block execution of a calling
program as long as figures created in encapsulated M-code are displayed.
mclWaitForFiguresToDie takes no arguments. Your application can call
mclWaitForFiguresToDie any time during execution. Typically you use
mclWaitForFiguresToDie when:

• There are one or more figures you want to remain open.

• The function that displays the graphics requires user input before
continuing.

• The function that calls the figures was called from main() in a console
program.

When mclWaitForFiguresToDie is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Both MATLAB Builder NE and MATLAB Builder JA use
mclWaitForFiguresToDie through the use of wrapper methods. See “Blocking
Execution of a Console Application that Creates Figures” in the MATLAB
Builder NE User’s Guide and “Blocking Execution of a Console Application
that Creates Figures” in the MATLAB Builder JA User’s Guide for more
details and code fragment examples.

Caution Use caution when calling the mclWaitForFiguresToDie function.
Calling this function from an interactive program like Excel can hang the
application. This function should be called only from console-based programs.

5-30

Compiler Tips

Terminating Figures by Force with the mclKillAllFigures Method
mclKillAllFigures finds all open figures and deletes them. This
function uses the same internal algorithm to locate open figures as
mclWaitForFiguresToDie. The published signature is:

void mclKillAllFigures(HMCRINSTANCE inst)

Typically you use mclKillAllFigures when:

• You need to kill figures that are being displayed as the result of a
programming problem, such as an endless loop.

• You want to ensure all figures are closed before the execution of another
application.

Example: Terminating and Deleting Open Figures Using
mclKillAllFigures. In this example, mclKillAllFigures is used to terminate
and delete three figures displayed by the shared library calls showknot(),
showpeak(), and showbottle() using three methods, all of which have the
same result of terminating all figures (knot, peak, and bottle).

showknot();
showpeak();
showbottle();
mclKillAllFigures((HMCRINSTANCE)0);

showknot();
showpeak();
showbottle();
mclKillAllFigures(0);

showknot();
showpeak();
showbottle();
mclKillAllFigures(NULL);

Passing Arguments to and from a Standalone
Application
To pass input arguments to a MATLAB Compiler generated standalone
application, you pass them just as you would to any console-based application.

5-31

5 Compiler Commands

For example, to pass a file called helpfile to the compiled function called
filename, use

filename helpfile

To pass numbers or letters (e.g., 1, 2, and 3), use

filename 1 2 3

Do not separate the arguments with commas.

To pass matrices as input, use

filename "[1 2 3]" "[4 5 6]"

You have to use the double quotes around the input arguments if there is
a space in it. The calling syntax is similar to the dos command. For more
information, see the MATLAB dos command.

The things you should keep in mind for your M-file before you compile are:

• The input arguments you pass to your application from a system prompt
are considered as string input. If, in your M-code before compilation, you
are expecting the data in different format, say double, you will need to
convert the string input to the required format. For example, you can use
str2num to convert the string input to numerical data. You can determine
at run time whether or not to do this by using the isdeployed function.
If your M-file expects numeric inputs in MATLAB, the code can check
whether it is being run as a standalone application. For example:

function myfun (n1, n2)
if (isdeployed)
n1 = str2num(n1);
n2 = str2num(n2);

end

• You cannot return back values from your standalone application to the user.
The only way to return values from compiled code is to either display it on
the screen or store it in a file. To display your data on the screen, you either
need to unsuppress (do not use semicolons) the commands whose results
yield data you want to return to the screen or, use the disp command to

5-32

Compiler Tips

display the value. You can then redirect these outputs to other applications
using output redirection (> operator) or pipes (only on UNIX systems).

Passing Arguments to a Double-Clickable Application
On Windows, if you want to run the standalone application by double-clicking
it, you can create a batch file that calls this standalone application with the
specified input arguments. Here is an example of the batch file:

rem main.bat file that calls sub.exe with input parameters
sub "[1 2 3]" "[4 5 6]"
@echo off
pause

The last two lines of code keep your output on the screen until you press a
key. If you save this file as main.bat, you can run your code with the specified
arguments by double-clicking the main.bat icon.

Using Graphical Applications in Shared Library
Targets
When deploying a GUI as a shared library to a C/C++ application, use
mclWaitForFiguresToDie to display the GUI until it is explicitly terminated.

Using the VER Function in a Compiled MATLAB
Application
When you use the VER function in a compiled MATLAB application, it will
perform with the same functionality as if you had called it from MATLAB.
However, be aware that when using VER in a compiled MATLAB application,
only version information for toolboxes which the compiled application uses
will be displayed.

5-33

5 Compiler Commands

5-34

6

Standalone Applications

This chapter describes how to use MATLAB Compiler to code and build
standalone applications. You can distribute standalone applications to users
who do not have MATLAB software on their systems.

• “Introduction” on page 6-2

• “C Standalone Application Target” on page 6-3

• “Coding with M-Files Only” on page 6-8

• “Mixing M-Files and C or C++” on page 6-10

6 Standalone Applications

Introduction
Suppose you want to create an application that calculates the rank of a
large magic square. One way to create this application is to code the whole
application in C or C++; however, this would require writing your own magic
square, rank, and singular value routines. An easier way to create this
application is to write it as one or more M-files, taking advantage of the power
of MATLAB and its tools.

You can create MATLAB applications that take advantage of the
mathematical functions of MATLAB, yet do not require that end users own
MATLAB. Standalone applications are a convenient way to package the power
of MATLAB and to distribute a customized application to your users.

The source code for standalone C applications consists either entirely of
M-files or some combination of M-files, MEX-files, and C or C++ source code
files.

MATLAB Compiler takes your M-files and generates C source code functions
that allow your M-files to be invoked from outside of interactive MATLAB.
After compiling this C source code, the resulting object file is linked with
the run-time libraries. A similar process is used to create C++ standalone
applications.

You can call MEX-files from MATLAB Compiler generated standalone
applications. The MEX-files will then be loaded and called by the standalone
code.

6-2

C Standalone Application Target

C Standalone Application Target

In this section...

“Compiling the Application” on page 6-3

“Testing the Application” on page 6-3

“Deploying the Application” on page 6-4

“Running the Application” on page 6-6

Compiling the Application
This example takes an M-file, magicsquare.m, and creates a standalone C
application, magicsquare.

1 Copy the file magicsquare.m from

matlabroot/extern/examples/compiler

to your work folder.

2 To compile the M-code, use

mcc -mv magicsquare.m

The -m option tells MATLAB Compiler (mcc) to generate a C standalone
application. The -v option (verbose) displays the compilation steps
throughout the process and helps identify other useful information such
as which third-party compiler is used and what environment variables
are referenced.

This command creates the standalone application called magicsquare and
additional files. The Windows platform appends the .exe extension to
the name. See the table in “Standalone Executable” on page 3-6 for the
complete list of files created.

Testing the Application
These steps test your standalone application on your development machine.

6-3

6 Standalone Applications

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it
is likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 Update your path as described in “UNIX Settings for Development and
Testing” on page 10-3

2 Run the standalone application from the system prompt (shell prompt on
UNIX or DOS prompt on Windows) by typing the application name.

magicsquare.exe 4 (On Windows)
magicsquare 4 (On UNIX)
magicsquare.app/Contents/MacOS/magicsquare (On Maci64)

The results are:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Deploying the Application
You can distribute a MATLAB Compiler generated standalone application to
any target machine that has the same operating system as the machine on
which the application was compiled.

For example, if you want to deploy an application to a Windows machine, you
must use MATLAB Compiler to build the application on a Windows machine.
If you want to deploy the same application to a UNIX machine, you must use
MATLAB Compiler on the same UNIX platform and completely rebuild the
application. To deploy an application to multiple platforms requires MATLAB
and MATLAB Compiler licenses on all the desired platforms.

6-4

C Standalone Application Target

Note MCRInstaller.exe has obsoleted the need for the function buildmcr
or the creation of MCRInstaller.zip. See “Replacement of MCRInstaller.zip
and BUILDMCR Functionality” on page 1-19 for more details including
complete file paths to all install programs.

Windows
Gather and package the following files and distribute them to the deployment
machine.

Component Description

MCRInstaller.exe Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform.

magicsquare Application; magicsquare.exe for Windows

UNIX
Distribute and package your standalone application on UNIX by packaging
the following files and distributing them to the deployment machine.

Component Description

MCRInstaller.bin MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond to the
end user’s platform

magicsquare Application

Maci64
Distribute and package your standalone application on 64-bit Macintosh by
copying, tarring, or zipping as described in the following table.

6-5

6 Standalone Applications

Component Description

MCRInstaller.bin MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond to the
end user’s platform

magicsquare Application

magicsquare.app Application bundle

Assuming foo is a folder within your current folder:

• Distribute by copying:

cp -R myapp.app foo

• Distribute by tarring:

tar -cvf myapp.tar myapp.app
cd foo
tar -xvf../ myapp.tar

• Distribute by zipping:

zip -ry myapp myapp.app
cd foo
unzip ../myapp.zip

Running the Application
These steps describe the process that end users must follow to install and run
the application on their machines.

Preparing Your Machines

1 Install the MCR by running the MCRInstaller in a folder. For example,
run MCRInstaller.exe in C:\MCR. For more information on running the
MCR Installer utility, see“Working with the MCR” on page 4-21 and
“Replacement of MCRInstaller.zip and BUILDMCR Functionality” on page
1-19.

6-6

C Standalone Application Target

2 See “Path Modifications Required for Accessibility” on page 10-2 for
information on setting your path.

Executing the Application
Run the magicsquare standalone application from the system prompt and
provide a number representing the size of the desired magic square, for
example, 4.

magicsquare 4

The results are displayed as:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Note Input arguments you pass to and from a system prompt are treated as
string input and you need to consider that in your application. For more
information, see “Passing Arguments to and from a Standalone Application”
on page 5-31.

Note Before executing your MATLAB Compiler generated executable, set
the LD_PRELOAD environment variable to /lib/libgcc_s.so.1.

Executing the Application on 64-Bit Macintosh (Maci64). For 64-bit
Macintosh, you run the application through the bundle:

magicsquare.app/Contents/MacOS/magicsquare

6-7

6 Standalone Applications

Coding with M-Files Only

In this section...

“M-File Advantages” on page 6-8

“Example” on page 6-8

M-File Advantages
One way to create a standalone application is to write all the source code in
one or more M-files or MEX-files as in the previous magic square example.
Coding an application with M allows you to take advantage of the MATLAB
interactive development environment. Once the M-file version of your
program works properly, compile the code and build it into a standalone
application.

Example
Consider a simple application whose source code consists of two M-files,
mrank.m and main.m. This example generates C code from your M-files.

mrank.m
mrank.m returns a vector of integers, r. Each element of r represents the rank
of a magic square. For example, after the function completes, r(3) contains
the rank of a 3-by-3 magic square.

function r = mrank(n)
r = zeros(n,1);
for k = 1:n

r(k) = rank(magic(k));
end

In this example, the line r = zeros(n,1) preallocates memory to help the
performance of MATLAB Compiler.

main.m
main.m contains a “main routine” that calls mrank and then prints the results.

6-8

Coding with M-Files Only

function main
r = mrank(5)

Compiling the Example
To compile these functions into code that can be built into a standalone
application, invoke MATLAB Compiler.

mcc -m main mrank

The -m option causes MATLAB Compiler to generate C source code suitable for
standalone applications. For example, MATLAB Compiler generates C source
code files main_main.c and main_mcc_component_data.c. main_main.c
contains a C function named main; main_mcc_component_data.c contains
data needed by the MCR to run the application.

To build an application, you can use mbuild to compile and link these files.
Or, you can automate the entire build process (invoke MATLAB Compiler on
both M-files, use mbuild to compile the files with your ANSI C compiler, and
link the code) by using the command

mcc -m main mrank

If you need to combine other code with your application (Fortran, for example,
a language not supported byMATLAB Compiler), or if you want to build a
makefile that compiles your application, you can use the command

mcc -mc main mrank

The -c option inhibits invocation of mbuild. You will probably need to
examine the verbose output of mbuild to determine how to set the compiler
options in your makefile. Run

mcc -mv main mrank

to see the switches and options that mbuild uses on your platform.

6-9

6 Standalone Applications

Mixing M-Files and C or C++

In this section...

“Examples Overview” on page 6-10

“Simple Example” on page 6-10

“Advanced C Example” on page 6-15

Examples Overview
The examples in this section illustrate how to mix M-files and C or C++
source code files:

• The first example is a simple application that mixes M-files and C code.

• The second example illustrates how to write C code that calls a compiled
M-file.

One way to create a standalone application is to code some of it as one or
more function M-files and to code other parts directly in C or C++. To write a
standalone application this way, you must know how to do the following:

• Call the external C or C++ functions generated by MATLAB Compiler.

• Handle the results these C or C++ functions return.

Note If you include compiled M-code into a larger application, you
must produce a library wrapper file even if you do not actually create a
separate library. For more information on creating libraries, see Chapter 7,
“Libraries”.

For more information on mxArray, see “Using mxArray” on page 5-24.

Simple Example
This example involves mixing M-files and C code. Consider a
simple application whose source code consists of mrank.m, mrankp.c,
main_for_lib.c, and main_for_lib.h.

6-10

Mixing M-Files and C or C++

mrank.m
mrank.m contains a function that returns a vector of the ranks of the magic
squares from 1 to n.

function r = mrank(n)
r = zeros(n,1);
for k = 1:n

r(k) = rank(magic(k));
end

Copy mrank.m, printmatrix.m, mrankp.c, main_for_lib.c, and
main_for_lib.h into your current folder.

Build Process
The steps needed to build this standalone application are:

1 Compile the M-code.

2 Generate the library wrapper file.

3 Create the binary.

To perform these steps, enter the following on a single line:

mcc -W lib:libPkg -T link:exe mrank printmatrix mrankp.c
main_for_lib.c

The following flow diagram shows the mixing of M-files and C-files that forms
this sample standalone application. The top part of the diagram shows the
mcc process and the lower part shows the mbuild process.

6-11

6 Standalone Applications

MATLAB Compiler generates the following C source code files:

• libPkg.c

• libPkg.h

• libPkg_mcc_component_data.c

6-12

Mixing M-Files and C or C++

This command invokes mbuild to compile the resulting MATLAB Compiler
generated source files with the existing C source files (mrankp.c and
main_for_lib.c) and link against the required libraries.

MATLAB Compiler provides two different versions of mrankp.c in the
matlabroot/extern/examples/compiler folder:

• mrankp.c contains a POSIX-compliant main function. mrankp.c sends
its output to the standard output stream and gathers its input from the
standard input stream.

• mrankwin.c contains a Windows version of mrankp.c.

mrankp.c
The code in mrankp.c calls mrank and outputs the values that mrank returns.

/*
* MRANKP.C
* "Posix" C main program
* Calls mlfMrank, obtained by using MCC to compile mrank.m.
*
* $Revision: 1.1.4.57 $
*
*/

#include <stdio.h>
#include <math.h>
#include "libPkg.h"

main(int argc, char **argv)
{

mxArray *N; /* Matrix containing n. */
mxArray *R = NULL; /* Result matrix. */
int n; /* Integer parameter from command line.*/

/* Get any command line parameter. */
if (argc >= 2) {

n = atoi(argv[1]);
} else {

n = 12;

6-13

6 Standalone Applications

}
mclInitializeApplication(NULL,0);
libPkgInitialize();/* Initialize library of M-Functions */

/* Create a 1-by-1 matrix containing n. */
N = mxCreateDoubleScalar(n);

/* Call mlfMrank, the compiled version of mrank.m. */
mlfMrank(1, &R, N);

/* Print the results. */
mlfPrintmatrix(R);

/* Free the matrices allocated during this computation. */
mxDestroyArray(N);
mxDestroyArray(R);

libPkgTerminate(); /* Terminate library of M-functions */
mclTerminateApplication();

}

Explanation of mrankp.c
The heart of mrankp.c is a call to the mlfMrank function. Most of what comes
before this call is code that creates an input argument to mlfMrank. Most
of what comes after this call is code that displays the vector that mlfMrank
returns. First, the code must initialize the MCR and the generated libPkg
library.

mclInitializeApplication(NULL,0);
libPkgInitialize(); /* Initialize the library of M-Functions */

To understand how to call mlfMrank, examine its C function header, which is

void mlfMrank(int nargout, mxArray** r, mxArray* n);

According to the function header, mlfMrank expects one input parameter
and returns one value. All input and output parameters are pointers to the
mxArray data type. (See the External Interfaces documentation for details
on the mxArray data type.)

6-14

Mixing M-Files and C or C++

To create and manipulate mxArray * variables in your C code, you can call the
mx routines described in the External Interfaces documentation. For example,
to create a 1-by-1 mxArray * variable named N with real data, mrankp calls
mxCreateDoubleScalar.

N = mxCreateDoubleScalar(n);

mrankp can now call mlfMrank, passing the initialized N as the sole input
argument.

R = mlfMrank(1,&R,N);

mlfMrank returns its output in a newly allocated mxArray * variable named
R. The variable R is initialized to NULL. Output variables that have not been
assigned to a valid mxArray should be set to NULL. The easiest way to display
the contents of R is to call the mlfPrintmatrix function.

mlfPrintmatrix(R);

This function is defined in Printmatrix.m.

Finally, mrankp must free the heap memory allocated to hold matrices and
call the termination functions.

mxDestroyArray(N);
mxDestroyArray(R);
libPkgTerminate(); /* Terminate the library of M-functions */
mclTerminateApplication(); /* Terminate the MCR */

Advanced C Example
This section provides an advanced example that illustrates how to write C
code that calls a compiled M-file. Consider a standalone application whose
source code consists of the files:

• multarg.m, which contains a function named multarg

• multargp.c, which contains C wrapper code that calls the C interface
function for the M-code

• printmatrix.m, which contains the helper function to print a matrix to
the screen

6-15

6 Standalone Applications

• main_for_lib.c, which contains one main function

• main_for_lib.h, which is the header for structures used in
main_for_lib.c and multargp.c

multarg.m specifies two input parameters and returns two output parameters.

function [a,b] = multarg(x,y)
a = (x + y) * pi;
b = svd(svd(a));

The code in multargp.c calls mlfMultarg and then displays the two values
that mlfMultarg returns.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "libMultpkg.h"

/*
* Function prototype; MATLAB Compiler creates mlfMultarg
* from multarg.m
*/

void PrintHandler(const char *text)
{

printf(text);
}

int main() /* Programmer-written coded to call mlfMultarg */
{
#define ROWS 3
#define COLS 3

mclOutputHandlerFcn PrintHandler;
mxArray *a = NULL, *b = NULL, *x, *y;
double x_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
double x_pi[ROWS * COLS] = {9, 2, 3, 4, 5, 6, 7, 8, 1};
double y_pr[ROWS * COLS] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
double y_pi[ROWS * COLS] = {2, 9, 3, 4, 5, 6, 7, 1, 8};
double *a_pr, *a_pi, value_of_scalar_b;

6-16

Mixing M-Files and C or C++

/* Initialize with a print handler to tell mlfPrintMatrix
* how to display its output.
*/

mclInitializeApplication(NULL,0);
libMultpkgInitializeWithHandlers(PrintHandler,PrintHandler);

/* Create input matrix "x" */
x = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
memcpy(mxGetPi(x), x_pi, ROWS * COLS * sizeof(double));

/* Create input matrix "y" */
y = mxCreateDoubleMatrix(ROWS, COLS, mxCOMPLEX);
memcpy(mxGetPr(y), y_pr, ROWS * COLS * sizeof(double));
memcpy(mxGetPi(y), y_pi, ROWS * COLS * sizeof(double));

/* Call the mlfMultarg function. */
mlfMultarg(2, &a, &b, x, y);

/* Display the entire contents of output matrix "a". */
mlfPrintmatrix(a);

/* Display the entire contents of output scalar "b" */
mlfPrintmatrix(b);

/* Deallocate temporary matrices. */
mxDestroyArray(a);
mxDestroyArray(b);
libMultpkgTerminate();
mclTerminateApplication();
return(0);

}

You can build this program into a standalone application by entering this
command on a single line:

mcc -W lib:libMultpkg -T link:exe multarg printmatrix
multargp.c main_for_lib.c

6-17

6 Standalone Applications

The program first displays the contents of a 3-by-3 matrix a, and then displays
the contents of scalar b.

6.2832 +34.5575i 25.1327 +25.1327i 43.9823 +43.9823i
12.5664 +34.5575i 31.4159 +31.4159i 50.2655 +28.2743i
18.8496 +18.8496i 37.6991 +37.6991i 56.5487 +28.2743i

143.4164

Explanation of This C Code
Invoking MATLAB Compiler on multarg.m generates the C function
prototype.

extern void mlfMultarg(int nargout, mxArray** a, mxArray** b,
mxArray* x, mxArray* y);

This C function header shows two input arguments (mxArray* x and
mxArray* y) and two output arguments (the return value and mxArray** b).

Use mxCreateDoubleMatrix to create the two input matrices (x and y). Both x
and y contain real and imaginary components. The memcpy function initializes
the components, for example:

x = mxCreateDoubleMatrix(,ROWS, COLS, mxCOMPLEX);
memcpy(mxGetPr(x), x_pr, ROWS * COLS * sizeof(double));
memcpy(mxGetPi(y), x_pi ROWS * COLS * sizeof(double));

The code in this example initializes variable x from two arrays (x_pr and
x_pi) of predefined constants. A more realistic example would read the array
values from a data file or a database.

After creating the input matrices, main calls mlfMultarg.

mlfMultarg(2, &a, &b, x, y);

The mlfMultarg function returns matrices a and b. a has both real and
imaginary components; b is a scalar having only a real component. The
program uses mlfPrintmatrix to output the matrices, for example:

mlfPrintmatrix(a);

6-18

7

Libraries

This chapter describes how to use MATLAB Compiler to create libraries.

• “Introduction” on page 7-2

• “Addressing mwArrays Above the 2 GB Limit” on page 7-3

• “C Shared Library Target” on page 7-4

• “C++ Shared Library Target” on page 7-18

• “MATLAB® Compiler Generated Interface Functions” on page 7-24

• “Using C/C++ Shared Libraries on a Mac OS X System” on page 7-34

• “About Memory Management and Cleanup” on page 7-38

7 Libraries

Introduction
You can use MATLAB Compiler to create C or C++ shared libraries (DLLs on
Microsoft Windows) from your MATLAB algorithms. You can then write C
or C++ programs that can call the MATLAB functions in the shared library,
much like calling the functions from the MATLAB command line.

7-2

Addressing mwArrays Above the 2 GB Limit

Addressing mwArrays Above the 2 GB Limit
In R2007b, you had to define MX_COMPAT_32_OFF in the mbuild step to address
MWArrays above the 2 GB limit on 64-bit architectures. If you did not define
MX_COMPAT_32_OFF, the compile time variable MX_COMPAT_32 was defined for
you, limiting you to using smaller arrays on all architectures.

In R2008a, the default definition of MX_COMPAT_32 was removed, and large
array support is now the default for both C and C++ code. This default
may, in some cases, cause compiler warnings and errors. You can define
MX_COMPAT_32 in your mbuild step to return to the previously default
behavior.

Code compiled with MX_COMPAT_32 is not 64-bit aware. In addition,
MX_COMPAT_32 controls the behavior of some type definitions. For instance,
when MX_COMPAT_32 is defined, mwSize and mwIndex are defined to ints.
When MX_COMPAT_32 is not defined, mwSize and mwIndex are defined to
size_t. This can lead to compiler warnings and errors with respect to signed
and unsigned mismatches.

In R2008b, all support for MX_COMPAT_32 was removed.

See Appendix C, “C++ Utility Library Reference”, for detailed changes to
mwArray classes and method signatures.

7-3

7 Libraries

C Shared Library Target

In this section...

“C Shared Library Wrapper” on page 7-4

“C Shared Library Example” on page 7-4

“Calling a Shared Library” on page 7-11

C Shared Library Wrapper
The C library wrapper option allows you to create a shared library from an
arbitrary set of M-files on both Microsoft Windows and UNIX operating
systems. MATLAB Compiler generates a wrapper file, a header file, and
an export list. The header file contains all of the entry points for all of the
compiled M-functions. The export list contains the set of symbols that are
exported from a C shared library.

Note Even if you are not producing a shared library, you must use -W lib
or -W cpplib when including any MATLAB Compiler generated code into
a larger application.

Note mclmcrrt.lib is required for successful linking. For more information,
see the MathWorks Support database and search for information on the
MSVC shared library.

C Shared Library Example
This example takes several M-files and creates a C shared library. It also
includes a standalone driver application to call the shared library.

Building the Shared Library

1 Copy the following files from matlabroot/extern/examples/compiler to
your work directory:

7-4

http://www.mathworks.com/support/solutions/

C Shared Library Target

matlabroot/extern/examples/compiler/addmatrix.m
matlabroot/extern/examples/compiler/multiplymatrix.m
matlabroot/extern/examples/compiler/eigmatrix.m
matlabroot/extern/examples/compiler/matrixdriver.c

Note matrixdriver.c contains the standalone application’s main function.

2 To create the shared library, enter the following command on a single line:

mcc -B csharedlib:libmatrix addmatrix.m multiplymatrix.m
eigmatrix.m -v

The -B csharedlib option is a bundle option that expands into

-W lib:<libname> -T link:lib

The -W lib:<libname> option tells MATLAB Compiler to generate a
function wrapper for a shared library and call it libname. The -T link:lib
option specifies the target output as a shared library. Note the directory
where the product puts the shared library because you will need it later on.

Writing the Driver Application
All programs that call MATLAB Compiler generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets
up the global MCR state and enables the construction of MCR instances.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

7-5

7 Libraries

Note If your driver application displays MATLAB figure windows, you
should include a call to mclWaitForFiguresToDie(NULL) before calling
the Terminate functions and mclTerminateApplication in the following
two steps.

5 Call, once for each library, <lib>Terminate, to destroy the associated MCR.

Caution <lib>Terminate will bring down enough of the MCR address
space that the same library (or any other library) cannot be initialized.
Issuing a <lib>Initialize call after a <lib>Terminate call causes
unpredictable results. Instead, use the following structure:

...code...
mclInitializeApplication();
lib1Initialize();
lib2Initialize();

lib1Terminate();
lib2Terminate();
mclTerminateApplication();
...code...

6 Call mclTerminateApplication to free resources associated with the
global MCR state.

7 Clean up variables, close files, etc., and exit.

This example uses matrixdriver.c as the driver application.

7-6

C Shared Library Target

Note You must call mclInitializeApplication once at the beginning
of your driver application. You must make this call before calling any
other MathWorks functions or when linking to a MATLAB library such as
mclmcrrt.lib (for example, before accessing an MWArray). See “Calling a
Shared Library” on page 7-11 for complete details on using a MATLAB
Compiler generated library in your application.

Compiling the Driver Application
To compile the driver code, matrixdriver.c, you use your C/C++ compiler.
Execute the following mbuild command that corresponds to your development
platform. This command uses your C/C++ compiler to compile the code.

mbuild matrixdriver.c libmatrix.lib (Windows)
mbuild matrixdriver.c -L. -lmatrix -I. (UNIX)

Note This command assumes that the shared library and the corresponding
header file created from step 2 are in the current working directory.

On UNIX, if this is not the case, replace the “.” (dot) following the -L and -I
options with the name of the directory that contains these files, respectively.

On Windows, if this is not the case, specify the full path to libmatrix.lib,
and use a -I option to specify the directory containing the header file.

This generates a standalone application, matrixdriver.exe, on Windows,
and matrixdriver, on UNIX.

Difference in the Exported Function Signature. The interface to the
mlf functions generated by MATLAB Compiler from your M-file routines
has changed from earlier versions of the product. The generic signature of
the exported mlf functions is

• M-functions with no return values

bool MW_CALL_CONV mlf<function-name>(<list_of_input_variables>);

7-7

7 Libraries

• M-functions with at least one return value

bool MW_CALL_CONV mlf<function-name>(int number_of_return_values,
<list_of_pointers_to_return_variables>,
<list_of_input_variables>);

Refer to the header file generated for your library for the exact signature of
the exported function. For example, in the library created in the previous
section, the signature of the exported addmatrix function is

void mlfAddmatrix(int nlhs,mxArray **a,mxArray *a1,mxArray *a2);

Testing the Driver Application
These steps test your standalone driver application and shared library on
your development machine.

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it
is likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 To run the standalone application, add the directory containing the shared
library that was created in step 2 in “Building the Shared Library” on page
7-4 to your dynamic library path.

2 Update the path for your platform by following the instructions in .

3 Run the driver application from the prompt (DOS prompt on Windows,
shell prompt on UNIX) by typing the application name.

matrixdriver.exe (On Windows)
matrixdriver (On UNIX)
matrixdriver.app/Contents/MacOS/matrixdriver (On Maci64)

7-8

C Shared Library Target

The results are displayed as

The value of added matrix is:
2.00 8.00 14.00
4.00 10.00 16.00
6.00 12.00 18.00

The value of the multiplied matrix is:
30.00 66.00 102.00
36.00 81.00 126.00
42.00 96.00 150.00

The eigenvalues of the first matrix are:
16.12 -1.12 -0.00

Creating Shared Libraries from C with mbuild
mbuild can also create shared libraries from C source code. If a file with
the extension .exports is passed to mbuild, a shared library is built. The
.exports file must be a text file, with each line containing either an exported
symbol name, or starting with a # or * in the first column (in which case it
is treated as a comment line). If multiple .exports files are specified, all
symbol names in all specified .exports files are exported.

Deploying Standalone Applications That Call MATLAB Compiler
Based Shared Libraries
Gather and package the following files and distribute them to the deployment
machine.

Note MCRInstaller.exe has obsoleted the need for the function buildmcr
or the creation of MCRInstaller.zip. See “Replacement of MCRInstaller.zip
and BUILDMCR Functionality” on page 1-19 for more details including
complete file paths to all install programs.

7-9

7 Libraries

Component Description

MCRInstaller.exe
(Windows)

Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.

matrixdriver Application; matrixdriver.exe for Windows

matrixdriver.app for Maci64 (bundle
directory structure must be deployed)

libmatrix Shared library; extension varies by platform.
Extensions are:

• Windows — .dll

• Solaris, Linux, Linux x86-64 — .so

• Mac OS X — .dylib

Note You can distribute a MATLAB Compiler generated standalone
application to any target machine that has the same operating system as the
machine on which the application was compiled. If you want to deploy the
same application to a different platform, you must use MATLAB Compiler on
the different platform and completely rebuild the application.

Deploying Shared Libraries to Be Used with Other Projects
To distribute the shared library for use with an external application, you need
to distribute the following.

Note MCRInstaller.exe has obsoleted the need for the function buildmcr
or the creation of MCRInstaller.zip. See “Replacement of MCRInstaller.zip
and BUILDMCR Functionality” on page 1-19 for more details including
complete file paths to all install programs.

7-10

C Shared Library Target

Component Description

MCRInstaller.exe (Windows) Self-extracting MATLAB Compiler
Runtime library utility; platform-dependent file
that must correspond to the end user’s platform

libmatrix Shared library; extension varies by platform, for
example, DLL on Windows

libmatrix.h Library header file

Calling a Shared Library
At run-time, there is an MCR instance associated with each individual
shared library. Consequently, if an application links against two MATLAB
Compiler generated shared libraries, there will be two MCR instances created
at run-time.

You can control the behavior of each MCR instance by using MCR options.
The two classes of MCR options are global and local. Global MCR options are
identical for each MCR instance in an application. Local MCR options may
differ for MCR instances.

To use a shared library, you must use these functions:

• mclInitializeApplication

• mclTerminateApplication

You may also have a need to use mclInhibitShutdown when initializing and
terminating an application repeatedly.

Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication
mclInitializeApplication allows you to set the global MCR options. They
apply equally to all MCR instances. You must set these options before
creating your first MCR instance.

These functions are necessary because some MCR options such as whether
or not to start Java, whether or not to use the MATLAB JIT feature, and so

7-11

7 Libraries

on, are set when the first MCR instance starts and cannot be changed by
subsequent instances of the MCR.

Caution You must call mclInitializeApplication once at the beginning
of your driver application. You must make this call before calling any other
MathWorks functions. This also applies to shared libraries. Avoid calling
mclInitializeApplication multiple times in an application as it will cause
the application to hang.

After you call mclTerminateApplication, you may not call
mclInitializeApplication again. No MathWorks functions may be called
after mclTerminateApplication.

The function signatures are

bool mclInitializeApplication(const char **options, int count);
bool mclTerminateApplication(void);

mclInitializeApplication. Takes an array of strings of user-settable options
(these are the very same options that can be provided to mcc via the -R option)
and a count of the number of options (the length of the option array). Returns
true for success and false for failure.

mclTerminateApplication. Takes no arguments and can only be called
after all MCR instances have been destroyed. Returns true for success and
false for failure.

This C example shows typical usage of the functions:

int main(){

mxArray *in1, *in2; /* Define input parameters */
mxArray *out = NULL;/* and output parameters to pass to

the library functions */

double data[] = {1,2,3,4,5,6,7,8,9};

/* Call library initialization routine and make sure that

7-12

C Shared Library Target

the library was initialized properly */
mclInitializeApplication(NULL,0);
if (!libmatrixInitialize()){

fprintf(stderr,"could not initialize the library
properly\n");

return -1;
}

/* Create the input data */
in1 = mxCreateDoubleMatrix(3,3,mxREAL);
in2 = mxCreateDoubleMatrix(3,3,mxREAL);
memcpy(mxGetPr(in1), data, 9*sizeof(double));
memcpy(mxGetPr(in2), data, 9*sizeof(double));

/* Call the library function */
mlfAddmatrix(1, &out, in1, in2);
/* Display the return value of the library function */
printf("The value of added matrix is:\n");
display(out);
/* Destroy return value since this variable will be reused

in next function call. Since we are going to reuse the
variable, we have to set it to NULL. Refer to MATLAB
Compiler documentation for more information on this. */

mxDestroyArray(out); out=0;
mlfMultiplymatrix(1, &out, in1, in2);
printf("The value of the multiplied matrix is:\n");
display(out);
mxDestroyArray(out); out=0;
mlfEigmatrix(1, &out, in1);
printf("The Eigen value of the first matrix is:\n");
display(out);
mxDestroyArray(out); out=0;

/* Call the library termination routine */
libmatrixTerminate();

/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
mclTerminateApplication();

7-13

7 Libraries

return 0;
}

Caution mclInitializeApplication can only be called once per
application. Calling it a second time generates an error, and will cause the
function to return false. This function must be called before calling any C
MEX function or MAT-file API function.

Initializing and Terminating Your Application Multiple Times
With mclInhibitShutdown
Sometimes, repeated initialization and termination of an application may
cause the application to hang. To avoid this, call mclInhibitShutdown()
immediately after calling mclInitializeApplication(). For example:

if(!mclInitializeApplication(NULL,0))
{

fprintf(stderr,
"Could not initialize the application.\n");

*err = -1;
return(x);

}
mclInhibitShutdown();

Using a Shared Library
To use a MATLAB Compiler generated shared library in your application,
you must perform the following steps:

1 Include the generated header file for each library in your application. Each
MATLAB Compiler generated shared library has an associated header file
named libname.h, where libname is the library’s name that was passed in
on the command line when the library was compiled.

2 Initialize the MATLAB libraries by calling the mclInitializeApplication
API function. You must call this function once per application, and it must
be called before calling any other MATLAB API functions, such as C-Mex
functions or C MAT-file functions. mclInitializeApplication must be

7-14

C Shared Library Target

called before calling any functions in a MATLAB Compiler generated
shared library. You may optionally pass in application-level options to this
function. mclInitializeApplication returns a Boolean status code. A
return value of true indicates successful initialization, and false indicates
failure.

3 For each MATLAB Compiler generated shared library that you include in
your application, call the library’s initialization function. This function
performs several library-local initializations, such as unpacking the CTF
archive, and starting an MCR instance with the necessary information to
execute the code in that archive. The library initialization function will be
named libnameInitialize(), where libname is the library’s name that
was passed in on the command line when the library was compiled. This
function returns a Boolean status code. A return value of true indicates
successful initialization, and false indicates failure.

Note On Windows, if you want to have your shared library call a
MATLAB shared library (as generated by MATLAB Compiler), the
MATLAB library initialization function (e.g., <libname>Initialize,
<libname>Terminate, mclInitialize, mclTerminate) cannot be called
from your shared library during the DllMain(DLL_ATTACH_PROCESS) call.
This applies whether the intermediate shared library is implicitly or
explicitly loaded. You must place the call somewhere after DllMain().

4 Call the exported functions of each library as needed. Use the C MEX API
to process input and output arguments for these functions.

5 When your application no longer needs a given library, call the library’s
termination function. This function frees the resources associated with
its MCR instance. The library termination function will be named
<libname>Terminate(), where <libname> is the library’s name that was
passed in on the command line when the library was compiled. Once a
library has been terminated, that library’s exported functions should not
be called again in the application.

6 When your application no longer needs to call any MATLAB Compiler
generated libraries, call the mclTerminateApplication API function. This
function frees application-level resources used by the MCR. Once you call

7-15

7 Libraries

this function, no further calls can be made to MATLAB Compiler generated
libraries in the application.

Loading Libraries in a Compiled Function
With MATLAB Compiler version 4.0 (R14) and later, you can use M-file
prototypes as described below to load your library in a compiled application.
Loading libraries using H-file headers is not supported in compiled
applications. This behavior occurs when loadlibrary is compiled with the
header argument as in the statement:

loadlibrary(library, header)

In order to work around this issue, execute the following command at the
MATLAB command prompt:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

where mylibrarymfile is the name of an M-file you would like to use when
loading this library. This step only needs to be performed once to generate an
M-file for the library.

In the code that is be compiled, you can now call loadlibrary with the
following syntax:

loadlibrary(library, @mylibrarymfile, 'alias', alias)

With MATLAB Compiler versions 4.0.1 (R14+) and later, generated M-files
will automatically be included in the CTF file as part of the compilation
process. For MATLAB Compiler versions 4.0 (R14) and later, include your
library M-file in the compilation with the -a option with mcc.

Caution With MATLAB Compiler Version 3.0 (R13SP1) and earlier, you
cannot compile calls to loadlibrary because of general restrictions and
limitations of the product.

7-16

C Shared Library Target

Note You can use your operating system’s loadlibrary function to call
a MATLAB Compiler shared library function as long as you first call the
initialization and termination functions mclInitializeApplication() and
mclTerminateApplication().

7-17

7 Libraries

C++ Shared Library Target

In this section...

“C++ Shared Library Wrapper” on page 7-18

“C++ Shared Library Example” on page 7-18

C++ Shared Library Wrapper
The C++ library wrapper option allows you to create a shared library from
an arbitrary set of M-files. MATLAB Compiler generates a wrapper file and
a header file. The header file contains all of the entry points for all of the
compiled M-functions.

Note Even if you are not producing a shared library, you must use -W lib
or -W cpplib when including any MATLAB Compiler generated code into a
larger application. For more information, refer to “Mixing M-Files and C
or C++” on page 6-10.

C++ Shared Library Example
This example rewrites the previous C shared library example using C++. The
procedure for creating a C++ shared library from M-files is identical to the
procedure for creating a C shared library, except you use the cpplib wrapper.
Enter the following command on a single line:

mcc -W cpplib:libmatrixp -T link:lib addmatrix.m
multiplymatrix.m eigmatrix.m -v

The -W cpplib:<libname> option tells MATLAB Compiler to generate a
function wrapper for a shared library and call it <libname>. The -T link:lib
option specifies the target output as a shared library. Note the directory
where the product puts the shared library because you will need it later.

7-18

C++ Shared Library Target

Writing the Driver Application

Note Due to name mangling in C++, you must compile your driver application
with the same version of your third-party compiler that you use to compile
your C++ shared library.

This example uses a C++ version of the matrixdriver application,
matrixdriver.cpp. In the C++ version, arrays are represented by objects
of the class mwArray. Every mwArray class object contains a pointer to a
MATLAB array structure. For this reason, the attributes of an mwArray object
are a superset of the attributes of a MATLAB array. Every MATLAB array
contains information about the size and shape of the array (i.e., the number
of rows, columns, and pages) and either one or two arrays of data. The first
array stores the real part of the array data and the second array stores the
imaginary part. For arrays with no imaginary part, the second array is not
present. The data in the array is arranged in column-major, rather than
row-major, order.

/*==
*
* MATRIXDRIVER.CPP
* Sample driver code that calls a C++ shared library created
* using MATLAB Compiler. Refer to MATLAB Compiler documentation
* for more information on this
*
* This is the wrapper CPP code to call a shared library
* created using the MATLAB Compiler.
*
* Copyright 1984-2005 The MathWorks, Inc.
*
==/

// Include the library specific header file as generated by the
// MATLAB Compiler
#include "libmatrixp.h"

int run_main(int argc, char **argv)
{

// Call application and library initialization.

7-19

7 Libraries

// Perform init before calling any API functions or
// Compiler-generated libraries.
if (!mclInitializeApplication(NULL,0))
{

std::cerr << "could not initialize the application
properly"

<< std::endl;
return -1;

}
if(!libmatrixpInitialize())
{

std::cerr << "could not initialize the library properly"
<< std::endl;

return -1;
}
else
{

try
{

// Create input data
double data[] = {1,2,3,4,5,6,7,8,9};
mwArray in1(3, 3, mxDOUBLE_CLASS, mxREAL);
mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);
in1.SetData(data, 9);
in2.SetData(data, 9);

// Create output array
mwArray out;

// Call the library function
addmatrix(1, out, in1, in2);

// Display the return value of the library function
std::cout << "Value of added matrix is:"

<< std::endl;
std::cout << out << std::endl;

multiplymatrix(1, out, in1, in2);
std::cout << "Value of the multiplied matrix is:"

<< std::endl;

7-20

C++ Shared Library Target

std::cout << out << std::endl;

eigmatrix(1, out, in1);
std::cout << "Eigenvalues of the first matrix are:"

<< std::endl;
std::cout << out << std::endl;

}
catch (const mwException& e)
{

std::cerr << e.what() << std::endl;
return -2;

}
catch (...)
{

std::cerr << "Unexpected error thrown" << std::endl;
return -3;

}
// Call the application and library termination routine
libmatrixpTerminate();

}
/* You should call mclTerminate application at the end of
* your application.
*/

mclTerminateApplication();
return 0;

}

int main()
{

mclmcrInitialize();
return mclRunMain((mclMainFcnType)run_main,0,NULL);

}

Compiling the Driver Application
To compile the matrixdriver.cpp driver code, you use your C++ compiler.
By executing the following mbuild command that corresponds to your
development platform, you will use your C++ compiler to compile the code.

7-21

7 Libraries

mbuild matrixdriver.cpp libmatrixp.lib (Windows)
mbuild matrixdriver.cpp -L. -lmatrixp -I. (UNIX)

Note This command assumes that the shared library and the corresponding
header file are in the current working directory.

On Windows, if this is not the case, specify the full path to libmatrixp.lib,
and use a -I option to specify the directory containing the header file.

On UNIX, if this is not the case, replace the “.” (dot) following the -L and -I
options with the name of the directory that contains these files, respectively.

Incorporating a C++ Shared Library into an Application
To incorporate a C++ shared library into your application, you will, in general,
follow the steps in “Using a Shared Library” on page 7-14. There are two main
differences to note when using a C++ shared library:

• Interface functions use the mwArray type to pass arguments, rather than
the mxArray type used with C shared libraries.

• C++ exceptions are used to report errors to the caller. Therefore, all calls
must be wrapped in a try-catch block.

Exported Function Signature
The C++ shared library target generates two sets of interfaces for each
M-function. The first set of exported interfaces is identical to the mlx
signatures that are generated in C shared libraries. The second set of
interfaces is the C++ function interfaces. The generic signature of the
exported C++ functions is as follows:

M-Functions with No Return Values.

bool MW_CALL_CONV mlx<function-name>(<list_of_input_variables>);

M-Functions with at Least One Return Value.

bool MW_CALL_CONV mlx<function-name>(int number_of_return_values),

7-22

C++ Shared Library Target

<list_of_return_variables>, <list_of_input_variables>);

In this case, <list_of_input_variables> represents a comma-separated
list of type const mwArray& and <list_of_return_variables> represents
a comma-separated list of type mwArray&. For example, in the libmatrix
library, the C++ interfaces to the addmatrix M-function is generated as:

void addmatrix(int nargout, mwArray& a , const mwArray& a1,
const mwArray& a2);

Error Handling
C++ interface functions handle errors during execution by throwing a C++
exception. Use the mwException class for this purpose. Your application can
catch mwExceptions and query the what() method to get the error message.
To correctly handle errors when calling the C++ interface functions, wrap
each call inside a try-catch block.

try
{

...
(call function)
...

}
catch (const mwException& e)
{

...
(handle error)
...

}

The matrixdriver.cpp application illustrates the typical way to handle
errors when calling the C++ interface functions.

7-23

7 Libraries

MATLAB Compiler Generated Interface Functions

In this section...

“Functions in the Shared Library” on page 7-24

“Type of Application” on page 7-24

“Structure of Programs That Call Shared Libraries” on page 7-26

“Library Initialization and Termination Functions” on page 7-27

“Print and Error Handling Functions” on page 7-28

“Functions Generated from M-Files” on page 7-30

“Retrieving MCR State Information While Using Shared Libraries” on page
7-33

Functions in the Shared Library
A shared library generated by MATLAB Compiler contains at least seven
functions. There are three generated functions to manage library initialization
and termination, one each for printed output and error messages, and two
generated functions for each M-file compiled into the library.

To generate the functions described in this section, first copy
sierpinski.m, main_for_lib.c, main_for_lib.h, and triangle.c from
matlabroot/extern/examples/compiler into your directory, and then
execute the appropriate MATLAB Compiler command.

Type of Application

For a C Application on Windows

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c main_for_lib.c libtriangle.lib

For a C Application on UNIX

mcc -W lib:libtriangle -T link:lib sierpinski.m

7-24

MATLAB® Compiler™ Generated Interface Functions

mbuild triangle.c main_for_lib.c -L. -ltriangle -I.

For a C++ Application on Windows

mcc -W cpplib:libtrianglep -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c libtrianglep.lib

For a C++ Application on UNIX

mcc -W cpplib:libtriangle -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c -L. -ltriangle -I.

These commands create a main program named triangle, and a shared
library named libtriangle. The library exports a single function that uses
a simple iterative algorithm (contained in sierpinski.m) to generate the
fractal known as Sierpinski’s Triangle. The main program in triangle.c
or triangle.cpp can optionally take a single numeric argument, which, if
present, specifies the number of points used to generate the fractal. For
example, triangle 8000 generates a diagram with 8,000 points.

7-25

7 Libraries

In this example, MATLAB Compiler places all of the generated functions into
the generated file libtriangle.c or libtriangle.cpp.

Structure of Programs That Call Shared Libraries
All programs that call MATLAB Compiler generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets
up the global MCR state and enables the construction of MCR instances.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

7-26

MATLAB® Compiler™ Generated Interface Functions

5 Call, once for each library, <libraryname>Terminate, to destroy the
associated MCR.

6 Call mclTerminateApplication to free resources associated with the
global MCR state.

7 Clean up variables, close files, etc., and exit.

To see these steps in an actual example, review the main program in this
example, triangle.c.

Library Initialization and Termination Functions
The library initialization and termination functions create and destroy,
respectively, the MCR instance required by the shared library. You must call
the initialization function before you invoke any of the other functions in the
shared library, and you should call the termination function after you are
finished making calls into the shared library (or you risk leaking memory).

There are two forms of the initialization function and one type of termination
function. The simpler of the two initialization functions takes no arguments;
most likely this is the version your application will call. In this example, this
form of the initialization function is called libtriangleInitialize.

bool libtriangleInitialize(void)

This function creates an MCR instance using the default print and error
handlers, and other information generated during the compilation process.

However, if you want more control over how printed output and error
messages are handled, you may call the second form of the function, which
takes two arguments.

bool libtriangleInitializeWithHandlers(
mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler

)

By calling this function, you can provide your own versions of the print
and error handling routines called by the MCR. Each of these routines has
the same signature (for complete details, see “Print and Error Handling

7-27

7 Libraries

Functions” on page 7-28). By overriding the defaults, you can control how
output is displayed and, for example, whether or not it goes into a log file.

Note Before calling either form of the library initialization routine, you must
first call mclInitializeApplication to set up the global MCR state. See
“Calling a Shared Library” on page 7-11 for more information.

On Microsoft Windows platforms, MATLAB Compiler generates an additional
initialization function, the standard Microsoft DLL initialization function
DllMain.

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,
void *pv)

The generated DllMain performs a very important service; it locates the
directory in which the shared library is stored on disk. This information is
used to find the CTF archive, without which the application will not run.
If you modify the generated DllMain (not recommended), make sure you
preserve this part of its functionality.

Library termination is simple.

void libtriangleTerminate(void)

Call this function (once for each library) before calling
mclTerminateApplication.

Print and Error Handling Functions
By default, MATLAB Compiler generated applications and shared libraries
send printed output to standard output and error messages to standard error.
MATLAB Compiler generates a default print handler and a default error
handler that implement this policy. If you’d like to change this behavior,
you must write your own error and print handlers and pass them in to the
appropriate generated initialization function.

You may replace either, both, or neither of these two functions. The MCR
sends all regular output through the print handler and all error output

7-28

MATLAB® Compiler™ Generated Interface Functions

through the error handler. Therefore, if you redefine either of these functions,
the MCR will use your version of the function for all the output that falls into
class for which it invokes that handler.

The default print handler takes the following form.

static int mclDefaultPrintHandler(const char *s)

The implementation is straightforward; it takes a string, prints it on standard
output, and returns the number of characters printed. If you override or
replace this function, your version must also take a string and return the
number of characters “handled.” The MCR calls the print handler when an
executing M-file makes a request for printed output, e.g., via the MATLAB
function disp. The print handler does not terminate the output with a
carriage return or line feed.

The default error handler has the same form as the print handler.

static int mclDefaultErrorHandler(const char *s)

However, the default implementation of the print handler is slightly different.
It sends the output to the standard error output stream, but if the string does
not end with carriage return, the error handler adds one. If you replace the
default error handler with one of your own, you should perform this check as
well, or some of the error messages printed by the MCR will not be properly
formatted.

Caution The error handler, despite its name, does not handle the actual
errors, but rather the message produced after the errors have been caught
and handled inside the MCR. You cannot use this function to modify the error
handling behavior of the MCR -- use the try and catch statements in your
M-files if you want to control how a MATLAB Compiler generated application
responds to an error condition.

7-29

7 Libraries

Note If you provide alternate C++ implementations of either
mclDefaultPrintHandler or mclDefaultErrorHandler, then functions must
be declared extern "C". For example:

extern "C" int myPrintHandler(const char *s);

Omitting extern "C" will generate warnings on the Solaris platform.

Functions Generated from M-Files
For each M-file specified on the MATLAB Compiler command line, the product
generates two functions, the mlx function and the mlf function. Each of these
generated functions performs the same action (calls your M-file function).
The two functions have different names and present different interfaces.
The name of each function is based on the name of the first function in the
M-file (sierpinski, in this example); each function begins with a different
three-letter prefix.

Note For C shared libraries, MATLAB Compiler generates the mlx and
mlf functions as described in this section. For C++ shared libraries, the
product generates the mlx function the same way it does for the C shared
library. However, the product generates a modified mlf function with these
differences:

• The mlf before the function name is dropped to keep compatibility with R13.

• The arguments to the function are mwArray instead of mxArray.

mlx Interface Function
The function that begins with the prefix mlx takes the same type and number
of arguments as a MATLAB MEX-function. (See the External Interfaces
documentation for more details on MEX-functions.) The first argument, nlhs,
is the number of output arguments, and the second argument, plhs, is a
pointer to an array that the function will fill with the requested number of
return values. (The “lhs” in these argument names is short for “left-hand

7-30

MATLAB® Compiler™ Generated Interface Functions

side” -- the output variables in a MATLAB expression are those on the
left-hand side of the assignment operator.) The third and fourth parameters
are the number of inputs and an array containing the input variables.

void mlxSierpinski(int nlhs, mxArray *plhs[], int nrhs,
mxArray *prhs[])

mlf Interface Function
The second of the generated functions begins with the prefix mlf. This
function expects its input and output arguments to be passed in as individual
variables rather than packed into arrays. If the function is capable of
producing one or more outputs, the first argument is the number of outputs
requested by the caller.

void mlfSierpinski(int nargout, mxArray** x, mxArray** y,
mxArray* iterations, mxArray* draw)

In both cases, the generated functions allocate memory for their return
values. If you do not delete this memory (via mxDestroyArray) when you are
done with the output variables, your program will leak memory.

Your program may call whichever of these functions is more convenient, as
they both invoke your M-file function in an identical fashion. Most programs
will likely call the mlf form of the function to avoid managing the extra
arrays required by the mlx form. The example program in triangle.c calls
mlfSierpinski.

mlfSierpinski(2, &x, &y, iterations, draw);

In this call, the caller requests two output arguments, x and y, and provides
two inputs, iterations and draw.

If the output variables you pass in to an mlf function are not NULL, the mlf
function will attempt to free them using mxDestroyArray. This means that
you can reuse output variables in consecutive calls to mlf functions without
worrying about memory leaks. It also implies that you must pass either NULL
or a valid MATLAB array for all output variables or your program will fail
because the memory manager cannot distinguish between a noninitialized
(invalid) array pointer and a valid array. It will try to free a pointer that is

7-31

7 Libraries

not NULL -- freeing an invalid pointer usually causes a segmentation fault
or similar fatal error.

Using varargin and varargout in an M-Function Interface
If your M-function interface uses varargin or varargout, you must pass them
as cell arrays. For example, if you have N varargins, you need to create one
cell array of size 1-by-N. Similarly, varargouts are returned back as one cell
array. The length of the varargout is equal to the number of return values
specified in the function call minus the number of actual variables passed.
As in the MATLAB software, the cell array representing varagout has to be
the last return variable (the variable preceding the first input variable) and
the cell array representing varargins has to be the last formal parameter to
the function call.

For information on creating cell arrays, refer to the C MEX function interface
in the External Interfaces documentation.

For example, consider this M-file interface:

[a,b,varargout] = myfun(x,y,z,varargin)

The corresponding C interface for this is

void mlfMyfun(int numOfRetVars, mxArray **a, mxArray **b,
mxArray **varargout, mxArray *x, mxArray *y,
mxArray *z, mxArray *varargin)

In this example, the number of elements in varargout is (numOfRetVars
- 2), where 2 represents the two variables, a and b, being returned. Both
varargin and varargout are single row, multiple column cell arrays.

7-32

MATLAB® Compiler™ Generated Interface Functions

Caution The C++ shared library interface does not support varargin with
zero (0) input arguments. Calling your program using an empty mwArray
results in the compiled library receiving an empty array with nargin = 1.
The C shared library interface allows you to call mlfFOO(NULL) (the compiled
M-code interprets this as nargin=0). However, calling FOO((mwArray)NULL)
with the C++ shared library interface causes the compiled M code to see an
empty array as the first input and interprets nargin=1.

For example, compile some M code as a C++ shared library using varargin
as the M function’s list of input arguments. Have the M code display the
variable nargin. Call the library with function FOO() and it won’t compile,
producing this error message:

... 'FOO' : function does not take 0 arguments

Call the library as:

mwArray junk;
FOO(junk);

or

FOO((mwArray)NULL);

At runtime, nargin=1. In MATLAB, FOO() is nargin=0 and FOO([]) is
nargin=1.

Retrieving MCR State Information While Using
Shared Libraries
When using shared libraries (note this does not apply to standalone
applications), you may call functions to retrieve specific information from
MCR state. For details, see “Retrieving MCR Attributes” on page 4-24.

7-33

7 Libraries

Using C/C++ Shared Libraries on a Mac OS X System
To use a MATLAB Compiler generated library on a Mac OS X system, you
must create a separate thread that initializes the shared library and call that
library’s functions. The main thread of the application is the thread that calls
your driver program’s main() function. The body of your main() function
must create a new thread, passing to it the address of a thread-function
containing the library initialization and necessary calls to the shared library
generated by MATLAB Compiler. The new thread does the main work of the
application, including calling MATLAB Compiler generated libraries.

In past releases, it was necessary to create and execute a CFRunLoop in the
main thread, as well as to call mclSetExitCode. Now, however, the same
functionality can be accomplished with a single call to mclRunMain.

The following example illustrates this procedure. This example rewrites the
C shared library example from this chapter for use on Mac OS X. Follow the
same procedure as in the earlier example to build and run this application.

/*===
*
* MATRIXDRIVER.C Sample driver code that calls the shared
* library created using MATLAB Compiler. Refer to the
* documentation of MATLAB Compiler for more info
* on this
*
* This is the wrapper C code to call a shared library created
* using MATLAB Compiler.
*
* Copyright 1984-2005 The MathWorks, Inc.
*
===/

#include <stdio.h>

#ifdef __APPLE_CC__
#include <CoreFoundation/CoreFoundation.h>
#endif

/* Include the MCR header file and the library specific header

7-34

Using C/C++ Shared Libraries on a Mac OS® X System

* file as generated by MATLAB Compiler */
#include "libmatrix.h"

/* This function displays double matrix stored in mxArray */
void display(const mxArray* in);

void *run_main(void *x)
{

int *err = x;
mxArray *in1, *in2; /* Define input parameters */
mxArray *out = NULL;/* and output parameters to be

* passed to lib functions */

double data[] = {1,2,3,4,5,6,7,8,9};

/* Call the mclInitializeApplication routine. Make sure that
* the application was initialized properly by checking the
* return status. This initialization has to be done before
* calling any MATLAB API's or MATLAB Compiler generated
* shared library functions. */

if(!mclInitializeApplication(NULL,0))
{

fprintf(stderr, "Could not initialize application.\n");
*err = -1;

return(x);
}

/* Create the input data */
in1 = mxCreateDoubleMatrix(3,3,mxREAL);
in2 = mxCreateDoubleMatrix(3,3,mxREAL);
memcpy(mxGetPr(in1), data, 9*sizeof(double));
memcpy(mxGetPr(in2), data, 9*sizeof(double));

/* Call the library intialization routine and make sure that
* the library was initialized properly. */

if (!libmatrixInitialize()){
fprintf(stderr,"Could not initialize the library.\n");
*err = -2;

}
else

7-35

7 Libraries

{
/* Call the library function */
mlfAddmatrix(1, &out, in1, in2);

/* Display the return value of the library function */
printf("The value of added matrix is:\n");
display(out);
/* Destroy the return value since this variable will be reused
* in the next function call. Since we are going to reuse the
* variable, we have to set it to NULL. Refer to
* documentation for more information on this. */

mxDestroyArray(out); out=0;
mlfMultiplymatrix(1, &out, in1, in2);
printf("The value of the multiplied matrix is:\n");
display(out);
mxDestroyArray(out); out=0;
mlfEigmatrix(1, &out, in1);
printf("The eigenvalues of the first matrix are:\n");
display(out);
mxDestroyArray(out); out=0;

/* Call the library termination routine */
libmatrixTerminate();

/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;

}
/* On MAC, you need to call mclRunMain with the appropriate
* exit status. Also, you should call mclmcrInitialize
* application before you call mclRunMain.
* mclTerminateApplication terminates the entire application. */
mclTerminateApplication();
return 0
}
int main()
{
mclmcrInitialize();
return mclRunMain((mclmainFcn)run_main,0,NULL);}

7-36

Using C/C++ Shared Libraries on a Mac OS® X System

/*DISPLAY This function will display the double matrix
* stored in an mxArray. This function assumes that
* the mxArray passed as input contains double array.
*/

void display(const mxArray* in)
{

int i=0, j=0; /* loop index variables */
int r=0, c=0; /* variables to store the row

* and column length of the matrix */
double *data; /* variable to point to the double data stored

* within the mxArray */

/* Get the size of the matrix */
r = mxGetM(in);
c = mxGetN(in);
/* Get a pointer to the double data in mxArray */
data = mxGetPr(in);

/* Loop through data and display in matrix format */
for(i = 0; i < c; i++){
for(j = 0; j < r; j++){

printf("%4.2f\t",data[j*c+i]);
}
printf("\n");

}
printf("\n");

}

The Mac version of the matrixdriver application differs from the version on
other platforms in these significant ways:

• The run_main() function performs the basic tasks of initialization, calling
the library’s functions, and termination. Compare this function with the
matrixdriver main() function on other platforms, listed in the earlier
example.

• In this example, the main() function creates a new thread using
pthread_create, and passes the address of the run_main() function to it.

7-37

7 Libraries

About Memory Management and Cleanup

In this section...

“Overview” on page 7-38

“Passing mxArrays to Shared Libraries” on page 7-38

Overview
Generated C++ code provides consistent garbage collection via the object
destructors and the MCR’s internal memory manager optimizes to avoid
heap fragmentation.

If memory constraints are still present on your system, try preallocating
arrays in M. This will reduce the number of calls to the memory manager, and
the degree to which the heap fragments.

Passing mxArrays to Shared Libraries
When an mxArray is created in an application which uses the MCR, it is
created in the managed memory space of the MCR.

Therefore, it is very important that you never create mxArrays (or call any
other MathWorks function) before calling mclInitializeApplication.

It is safe to call mxDestroyArray when you no longer need a particular
mxArray in your code, even when the input has been assigned to a persistent
or global variable in MATLAB. MATLAB uses reference counting to ensure
that when mxDestroyArray is called, if another reference to the underlying
data still exists, the memory will not be freed. Even if the underlying memory
is not freed, the mxArray passed to mxDestroyArray will no longer be valid.

For more information about mclInitializeApplication and
mclTerminateApplication, see “Calling a Shared Library” on page 7-11.

For more information about mxArray, see “Using mxArray” on page 5-24.

7-38

8

Troubleshooting

• “Introduction” on page 8-2

• “Common Issues” on page 8-3

• “Failure Points and Possible Solutions” on page 8-4

• “mbuild” on page 8-14

• “MATLAB® Compiler” on page 8-16

• “Deployed Applications” on page 8-20

8 Troubleshooting

Introduction
MATLAB Compiler software converts your MATLAB programs into
self-contained applications and software components and enables you to
share them with end users who do not have MATLAB installed. MATLAB
Compiler takes MATLAB applications (M-files, MEX-files, and other
MATLAB executable code) as input and generates redistributable standalone
applications or shared libraries. The resulting applications and components
are platform specific.

Another use of MATLAB Compiler is to build C or C++ shared libraries (DLLs
on Windows) from a set of M-files. You can then write C or C++ programs that
can call the functions in these libraries. The typical workflow for building a
shared library is to compile your M-code on a development machine, write a
C/C++ driver application, build an executable from the driver code, test the
resulting executable on that machine, and deploy the executable and MCR
to a test or customer machine without MATLAB.

Compiling a shared library is very similar to compiling an executable. The
command line differs as shown:

mcc -B csharedlib:hellolib hello.m

or

mcc -B cpplib:hellolib hello.m

Once you have compiled a shared library, the next step is to create a driver
application that initializes and terminates the shared library as well as
invokes method calls. This driver application can be compiled and linked with
your shared library with the mbuild command. For example:

mbuild helloapp.c hellolib.lib

or

mbuild helloapp.cpp hellolib.lib

The only header file that needs to be included in your driver application is the
one generated by your mcc command (hellolib.h in the above example). See
Chapter 7, “Libraries” for examples of how to correctly access a shared library.

8-2

Common Issues

Common Issues
Some of the most common issues encountered when using MATLAB Compiler
generated standalone executables or shared libraries are:

• Compilation fails with an error message. This can indicate a failure
during any one of the internal steps involved in producing the final output.

• Compilation succeeds but the application does not execute because
required DLLs are not found. All shared libraries required for your
standalone executable or shared library are contained in the MATLAB
Compiler Runtime (MCR). Installing the MCR is required for any of the
deployment targets.

• Compilation succeeds, and the resultant file starts to execute but
then produces errors and/or generates a crash dump.

• The compiled program executes on the machine where it was
compiled but not on other machines.

• The compiled program executes on some machines and not others.

If any of these issues apply to you, search “Failure Points and Possible
Solutions” on page 8-4 for common solutions.

8-3

8 Troubleshooting

Failure Points and Possible Solutions

In this section...

“How to Use this Section” on page 8-4

“Does the Failure Occur During Compilation?” on page 8-4

“Does the Failure Occur When Testing Your Application?” on page 8-8

“Does the Failure Occur When Deploying the Application to End Users?”
on page 8-11

How to Use this Section
Use the following list of questions to diagnose some of the more common
issues associated with using MATLAB Compiler software.

Does the Failure Occur During Compilation?
You typically compile your M-code on a development machine, test the
resulting executable on that machine, and deploy the executable and
MATLAB Compiler Runtime (MCR) to a test or customer machine without
MATLAB. The compilation process performs dependency analysis on your
M-code, creates an encrypted archive of your code and required toolbox code,
generates wrapper code, and compiles the wrapper code into an executable.
If your application fails to build an executable, the following questions may
help you isolate the problem.

Is your selected compiler supported by MATLAB Compiler?

See the current list of supported compilers at
http://www.mathworks.com/support/compilers/current_release/.

Are error messages produced at compile time?

See error messages in “MATLAB® Compiler” on page 8-16.

8-4

http://www.mathworks.com/support/compilers/current_release/

Failure Points and Possible Solutions

Did you compile with the verbose flag?

Compilation can fail in MATLAB because of errors encountered by the system
compiler when the generated wrapper code is compiled into an executable.
Additional errors and warnings are printed when you use the verbose flag
as such:

mcc -mv myApplication.m

In this example, -m tells MATLAB Compiler to create a standalone application
and -v tells MATLAB Compiler and other processors to display messages
about the process.

Are you compiling within or outside of MATLAB?

mcc can be invoked from the operating system command line or from the
MATLAB prompt. When you run mcc inside the MATLAB environment,
MATLAB will modify environment variables in its environment as necessary
so mcc will run. Issues with PATH, LD_LIBRARY_PATH, or other environment
variables seen at the operating system command line are often not seen at the
MATLAB prompt. The environment that MATLAB uses for mcc can be listed
at the MATLAB prompt. For example:

>>!set

lists the environment on Windows platforms.

>>!printenv

lists the environment on UNIX platforms. Using this path allows you to use
mcc from the operating system command line.

Does a simple read/write application such as “Hello World” compile
successfully?

Sometimes applications won’t compile because of MEX-file issues, other
toolboxes, or other dependencies. Compiling a helloworld application can
determine if MATLAB Compiler is correctly set up to produce any executable.
For example, try compiling:

function helloworld

8-5

8 Troubleshooting

disp('hello world')

with:

>>mcc -mv helloworld.m

Have you tried to compile any of the examples in MATLAB Compiler
help?

The source code for all examples is provided with MATLAB Compiler and is
located in matlabroot\extern\examples\compiler, where matlabroot is
the root folder of your MATLAB installation.

Does your code compile with the LCC compiler?

The LCC compiler is a free compiler provided with MATLAB on Windows. If
there are installation or path problems with other system compilers, you may
be able to compile your application with LCC.

Did the M-code compile successfully before this failure?

The three most common reasons for M-code to stop compiling are:

• Upgrading to MATLAB without running mbuild -setup — Running
mbuild -setup is required after any upgrade to MATLAB Compiler.

• A change in the selection of the system compiler — It is possible to
inadvertently change the system compiler for versions of MATLAB that
store preferences in a common folder. For example, MATLAB 7.0.1
(R14SP1) and MATLAB 7.0.4 (R14SP2) store their preferences in the same
folder. Changing the system compiler in R14SP1 will also change the
system compiler in R14SP2.

• An upgrade to MATLAB that didn’t include an upgrade to MATLAB
Compiler — The versions of MATLAB Compiler and MATLAB must be the
same in order to work together. It is possible to see conflicts in installations
where the MATLAB installation is local and the MATLAB Compiler
installation is on a network or vice versa.

8-6

Failure Points and Possible Solutions

Are you receiving errors when trying to compile a shared library?

Errors at compile time can indicate issues with either mcc or mbuild. For
troubleshooting mcc issues, see the previous section on compile time issues. It
is recommended that your driver application be compiled and linked using
mbuild. mbuild can be executed with the -v switch to provide additional
information on the compilation process. If you receive errors at this stage,
ensure that you are using the correct header files and/or libraries produced by
mcc, in your C or C++ driver. For example:

mcc -B csharedlib:hellolib hello.m

produces hellolib.h, which is required to be included in your C/C++
driver, and hellolib.lib or hellolib.so, which is required on the mbuild
command line.

If you are compiling a driver application, are you using mbuild?

The MathWorks recommends and supports using mbuild to compile your
driver application. mbuild is designed and tested to correctly build driver
applications. It will ensure that all MATLAB header files are found by the
C/C++ compiler, and that all necessary libraries are specified and found by
the linker.

Are you trying to compile your driver application using Microsoft
Visual Studio or another IDE?

If using an IDE, in addition to linking to the generated export library,
you need to include an additional dependency to mclmcrrt.lib.
This library is provided for all supported third-party compilers in
matlabroot\extern\lib\vendor-name.

Are you importing the correct versions of import libraries?

If you have multiple versions of MATLAB installed on your machine, it is
possible that an older or incompatible version of the library is referenced.
Ensure that the only MATLAB library that you are linking to is mclmcrrt.lib
and that it is referenced from the appropriate vendor folder. Do not reference
libraries as libmx or libut. In addition, verify that your library path
references the version of MATLAB that your shared library was built with.

8-7

8 Troubleshooting

Are you able to compile the matrixdriver example?

Typically, if you cannot compile the examples in the documentation, it
indicates an issue with the installation of MATLAB or your system compiler.
See Chapter 7, “Libraries” for these examples.

Do you get the MATLAB:I18n:InconsistentLocale Warning?

The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems.
This may affect your ability to display certain characters. For information
about changing the locale settings, see your operating system Help.

Do you get the MATLAB:I18n:InconsistentLocale Warning?

The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems.
This may affect your ability to display certain characters. For information
about changing the locale settings, see your operating system Help.

Does the Failure Occur When Testing Your
Application?
After you have successfully compiled your application, the next step is to test
it on a development machine and deploy it on a target machine. Typically the
target machine does not have a MATLAB installation and requires that the
MATLAB Compiler Runtime (MCR) be installed. A distribution includes all
of the files that are required by your application to run, which include the
executable, CTF archive and the MCR.

8-8

Failure Points and Possible Solutions

See Chapter 4, “Deployment Process”, for information on distribution contents
for specific application types and platforms.

Test the application on the development machine by running the application
against the MCR shipped with MATLAB Compiler. This will verify that
library dependencies are correct, that the CTF archive can be extracted and
that all M-code, MEX—files and support files required by the application have
been included in the archive. If you encounter errors testing your application,
the questions in the column to the right may help you isolate the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application’s execution by
issuing !application-name at the MATLAB prompt. If your application
executes within MATLAB but not from outside, this can indicate an issue with
the system PATH variable. For more information, see “Directories Required for
Development and Testing” on page 10-2.

Does the application begin execution and result in MATLAB or other
errors?

Ensure that you included all necessary files when compiling your application
(see the readme.txt file generated with your compilation for more details).

Functions that are called from your main M-file are automatically included
by MATLAB Compiler; however, functions that are not explicitly called,
for example through EVAL, need to be included at compilation using the
-a switch of the mcc command. Also, any support files like .mat, .txt, or
.html files need to be added to the archive with the -a switch. There is a
limitation on the functionality of MATLAB and associated toolboxes that
can be compiled. Check the documentation to see that the functions used in
your application’s M-files are valid. Check the file mccExcludedFiles.log
on the development machine. This file lists all functions called from your
application that cannot be compiled.

Does the application emit a warning like "MATLAB file may be
corrupt"?

See the listing for this error message in “MATLAB® Compiler” on page 8-16
for possible solutions.

8-9

8 Troubleshooting

Do you have multiple MATLAB versions installed?

Executables generated by MATLAB Compiler are designed to run in an
environment where multiple versions of MATLAB are installed. Some older
versions of MATLAB may not be fully compatible with this architecture.

On Windows, ensure that the matlabroot/runtime/win32|win64 of
the version of MATLAB in which you are compiling appears ahead of
matlabroot/runtime/win32|win64 of other versions of MATLAB installed on
the PATH environment variable on your machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LIBRARY_PATH
on Linux) match. Do this by comparing the outputs of !printenv at the
MATLAB prompt and printenv at the shell prompt. Using this path allows
you to use mcc from the operating system command line.

If you are testing a standalone executable or shared library and
driver application, did you install the MCR?

All shared libraries required for your standalone executable or shared library
are contained in the MATLAB Compiler Runtime (MCR). Installing the MCR
is required for any of the deployment targets.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or
mclmcrrt7x.so are generally caused by incorrect installation of the
MCR. It is also possible that the MCR is installed correctly, but that the
PATH,LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are set incorrectly.
For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 4-21.

Caution Do not solve these problems by moving libraries or other files
within the MCR folder structure. The runtime system is designed to
accommodate different MCR versions operating on the same machine. The
folder structure is an important part of this feature.

8-10

Failure Points and Possible Solutions

Are you receiving errors when trying to run the shared library
application?

Calling MATLAB Compiler generated shared libraries requires correct
initialization and termination in addition to library calls themselves. For
information on calling shared libraries, see “MATLAB® Compiler Generated
Interface Functions” on page 7-24.

Some key points to consider to avoid errors at run time:

• Ensure that the calls to mclinitializeApplication and
libnameInitialize are successful. The first function enables construction
of MCR instances. The second creates the MCR instance required by the
library named libname. If these calls are not successful, your application
will not execute.

• Do not use any mw- or mx-functions before calling
mclinitializeApplication. This includes static and global variables that
are initialized at program start. Referencing mw- or mx-functions before
initialization results in undefined behavior.

• Do not reinitialize (call mclinitializeApplication) after terminating
it with mclTerminateApplication. The mclinitializeApplication
andlibnameInitialize functions should be called only once.

• Ensure that you do not have any library calls after
mclTerminateApplication.

• Ensure that you are using the correct syntax to call the library and its
functions.

Does the Failure Occur When Deploying the
Application to End Users?
After the application is working on the test machine, failures can be isolated
in end-user deployment. The end users of your application need to execute
MCRInstaller in order to install the MATLAB Compiler Runtime (MCR) on
their machines. The MCR includes a set of shared libraries that provides
support for all features of MATLAB. If your application fails during end-user
deployment, the following questions in the column to the right may help you
isolate the problem.

8-11

8 Troubleshooting

Is the MCR installed?

All shared libraries required for your standalone executable or shared library
are contained in the MCR. Installing the MCR is required for any of the
deployment targets. See“Working with the MCR” on page 4-21 for complete
information.

If running on UNIX or Mac, did you update the dynamic library path
after installing the MCR?

For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 4-21.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or
mclmcrrt7x.so are generally caused by incorrect installation of the MCR.
It is also possible that the MCR is installed correctly, but that the PATH,
LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are set incorrectly.
For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 4-21.

Caution Do not solve these problems by moving libraries or other files
within the MCR folder structure. The runtime system is designed to
accommodate different MCR versions operating on the same machine. The
folder structure is an important part of this feature.

Do you have write access to the directory the application is installed
in?

The first operation attempted by a compiled application is extraction of the
CTF archive. If the archive is not extracted, the application cannot access
the compiled M-code and the application fails. If the application has write
access to the installation folder, a subfolder named application-name_mcr is
created the first time the application is run. After this subfolder is created,
the application no longer needs write access for subsequent executions.

8-12

Failure Points and Possible Solutions

Are you executing a newer version of your application?

When deploying a newer version of an executable, both the executable
needs to be redeployed, since it also contains the embedded CTF file.
The CTF file is keyed to a specific compilation session. Every time an
application is recompiled, a new, matched CTF file is created. As above,
write access is required to expand the new CTF file. Deleting the existing
application-name_mcr folder and running the new executable will verify
that the application can expand the new CTF file.

8-13

8 Troubleshooting

mbuild
This section identifies some of the more common problems that might occur
when configuring mbuild to create standalone applications.

Options File Not Writeable. When you run mbuild -setup, mbuild makes
a copy of the appropriate options file and writes some information to it. If
the options file is not writeable, you are asked if you want to overwrite the
existing options file. If you choose to do so, the existing options file is copied to
a new location and a new options file is created.

Directory or File Not Writeable. If a destination folder or file is not
writeable, ensure that the permissions are properly set. In certain cases,
make sure that the file is not in use.

mbuild Generates Errors. If you run mbuild filename and get errors, it
may be because you are not using the proper options file. Run mbuild -setup
to ensure proper compiler and linker settings.

Compiler and/or Linker Not Found. On Windows, if you get errors such
as unrecognized command or file not found, make sure the command-line
tools are installed and the path and other environment variables are set
correctly in the options file. For Microsoft® Visual Studio®, for example, make
sure to run vcvars32.bat (MSVC 6.x and earlier) or vsvars32.bat (MSVC
8.x and later).

mbuild Not a Recognized Command. If mbuild is not recognized, verify
that matlabroot\bin is in your path. On UNIX, it may be necessary to
rehash.

mbuild Works from the Shell But Not from MATLAB (UNIX). If the
command

mcc -m hello

works from the UNIX command prompt but not from the MATLAB prompt,
you may have a problem with your .cshrc file. When MATLAB launches a
new C shell to perform compilations, it executes the .cshrc script. If this
script causes unexpected changes to the PATH environment variable, an error

8-14

mbuild

may occur. You can test this before starting MATLAB by performing the
following:

setenv SHELL /bin/sh

If this works correctly, then you should check your .cshrc file for problems
setting the PATH environment variable.

Cannot Locate Your Compiler (Windows). If mbuild has difficulty
locating your installed compilers, it is useful to know how it finds compilers.
mbuild automatically detects your installed compilers by first searching for
locations specified in the following environment variables:

• MSVCDIR for Microsoft Visual C++, Version 6.0 or 8.0

Next, mbuild searches the Windows registry for compiler entries.

Internal Error when Using mbuild -setup (Windows). Some antivirus
software packages may conflict with the mbuild -setup process. If you get an
error message during mbuild -setup of the following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild -setup. After you have successfully run the setup option, you can
reenable your antivirus software.

Verification of mbuild Fails. If none of the previous solutions addresses
your difficulty with mbuild, contact Technical Support at The MathWorks at
http://www.mathworks.com/contact_TS.html.

8-15

http://www.mathworks.com/contact_TS.html

8 Troubleshooting

MATLAB Compiler
Typically, problems that occur when building standalone C and C++
applications involve mbuild. However, it is possible that you may run
into some difficulty with MATLAB Compiler. A good source for additional
troubleshooting information for the product is the MATLAB Compiler Product
Support page at the MathWorks Web site.

libmwlapack: load error: stgsy2_. This error occurs when a customer
has both the R13 and the R14 version of MATLAB or MCR/MGL specified
in the folder path and the R14 version fails to load because of a lapack
incompatability.

Licensing Problem. If you do not have a valid license for MATLAB Compiler
, you will get an error message similar to the following when you try to access
MATLAB Compiler:

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact The MathWorks. A list of contacts at
The MathWorks is provided at the beginning of this document.

MATLAB Compiler Does Not Generate the Application. If you experience
other problems with MATLAB Compiler, contact Technical Support at The
MathWorks at http://www.mathworks.com/contact_TS.html.

"MATLAB file may be corrupt" Message Appears. If you receive the
message

This MATLAB file does not have proper version information and
may be corrupt. Please delete the extraction directory and
rerun the application.

when you run your standalone application that was generated by MATLAB
Compiler, you should check the following:

• Do you have a startup.m file that calls addpath? If so, this will cause
run-time errors. As a workaround, use isdeployed to have the addpath

8-16

http://www.mathworks.com/support/product/product.html?product=CO
http://www.mathworks.com/support/product/product.html?product=CO
http://www.mathworks.com/contact_TS.html

MATLAB® Compiler™

command execute only from MATLAB. For example, use a construct such
as:

if ~isdeployed
addpath(path);

end

• Verify that the .ctf archive file self extracted and that you have write
permission to the folder.

• Verify that none of the files in the <application name>_mcr folder have
been modified or removed. Modifying this folder is not supported, and
if you have modified it, you should delete it and redeploy or restart the
application.

• If none of the above possible causes apply, then the error is likely caused
by a corruption. Delete the <application name>_mcr folder and run the
application.

Missing Functions in Callbacks. If your application includes a call to a
function in a callback string or in a string passed as an argument to the feval
function or an ODE solver, and this is the only place in your M-file this
function is called, MATLAB Compiler will not compile the function. MATLAB
Compiler does not look in these text strings for the names of functions to
compile. See “Fixing Callback Problems: Missing Functions” on page 9-3
for more information.

"MCRInstance not available" Message Appears. If you receive the
message MCRInstance not available when you try to run a standalone
application that was generated with MATLAB Compiler, it can be that the
MCR is not located properly on your path or the CTF file is not in the proper
folder (if you extracted it from your binary).
The UNIX verification process is the same, except you use the appropriate
UNIX path information.

To verify that the MCR is properly located on your path, from a development
Windows machine, confirm that matlabroot\runtime\win32|win64, where
matlabroot is your root MATLAB folder, appears on your system path ahead
of any other MATLAB installations.

8-17

8 Troubleshooting

From a Windows target machine, verify that
<mcr_root>\<ver>\runtime\win32|win64, where <mcr_root> is your root
MCR folder, appears on your system path. To verify that the CTF file that
MATLAB Compiler generated in the build process resides in the same folder
as your program’s file, look at the folder containing the program’s file and
make sure the corresponding .ctf file is also there.

Unable to Run MCRInstaller.exe on a Target Windows Machine. If
you receive the message

This advertised application would not be installed because it
might be Unsafe. Contact your administrator to change the
installation user interface option of the package to basic.

when you try to install MATLAB Compiler Runtime (MCR) using
MCRInstaller.exe on a Windows machine, you need to log in as an
administrator. If this is not possible and you have no objection to installing the
MCR in the default location, try the following command from a DOS window:

msiexec /qb /I MCRInstaller.msi

MCRInstaller.msi should have been placed in the installation folder after
your first attempt to install the MCR. This command will start the installer
using the basic UI configuration, which will execute at a lower security level.

Warning C:\WORK\R2008B~1\LCC\foo_delay_load.c: 21 static ‘void
function(void) FailedToLoadMCR’ is not referenced. This warning
message is produced as indirect output from of an internal delay load job that
is only seen by Microsoft Visual C++ compiler users. The message is benign
and should be ignored.

warning LNK4248: unresolved typeref token (01000028) for
’mxArray_tag’; image may not run test3.obj. If you receive this
message while compiling an MSVC application that calls a MATLAB
Compiler generated shared library, you can safely ignore it. The message is
due to changes in the Visual C++® 2005 compiler and will not interfere with
successful running of your application. If you desire, you can suppress the
message by including an empty definition for mxArray_tag inside your .cpp
file (test3.cpp, in this case). For example, if you add the line

struct mxArray_tag {};

8-18

MATLAB® Compiler™

at the beginning of your code and after the include statements, the warning
will not recur.

No Info.plist file in application bundle or no... . On 64-bit Macintosh,
indicates the application is not being executed through the bundle.

8-19

8 Troubleshooting

Deployed Applications
Failed to decrypt file. The M-file
"<ctf_root>\toolbox\compiler\deploy\matlabrc.m" cannot be
executed. The application is trying to use a CTF archive that does not
belong to it. Applications and CTF archives are tied together at compilation
time by a unique cryptographic key, which is recorded in both the application
and the CTF archive. The keys must match at run time. If they don’t match,
you will get this error.

To work around this, delete the *_mcr folder corresponding to the CTF archive
and then rerun the application. If the same failure occurs, you will likely need
to recompile the application using MATLAB Compiler and copy both the
application binary and the CTF archive into the installation folder.

This application has requested the run time to terminate in an
unusual way. This indicates a segmentation fault or other fatal error. There
are too many possible causes for this message to list them all.

To try to resolve this problem, run the application in the debugger and try to
get a stack trace or locate the line on which the error occurs. Fix the offending
code, or, if the error occurs in a MathWorks library or generated code, contact
MathWorks technical support.

Checking access to X display <IP-address>:0.0 . . .
If no response hit ^C and fix host or access control to host.
Otherwise, checkout any error messages that follow and fix . . .
Successful. This message can be ignored.

8-20

Deployed Applications

??? Error: File: /home/username/<M-file_name>
Line: 1651 Column: 8
Arguments to IMPORT must either end with ".*"
or else specify a fully qualified class name:
"<class_name>" fails this test. The import statement is referencing a
Java class (<class_name>) that MATLAB Compiler (if the error occurs at
compile time) or the MCR (if the error occurs at run time) cannot find.

To work around this, ensure that the JAR file that contains
the Java class is stored in a folder that is on the Java class
path. (See matlabroot/toolbox/local/classpath.txt for
the class path.) If the error occurs at run time, the classpath
is stored in matlabroot/toolbox/local/classpath.txt
when running on the development machine. It is stored in
<mcr_root>/toolbox/local/classpath.txt when running on a target
machine.

Warning: Unable to find Java library:
matlabroot\sys\java\jre\win32|win64\jre<version>\bin\client\jvm.dll
Warning: Disabling Java support. This warning indicates that a
compiled application can not find the Java virtual machine, and therefore, the
compiled application cannot run any Java code. This will affect your ability to
display graphics.

To resolve this, ensure that jvm.dll is in the
matlabroot\sys\java\jre\win32|win64\jre<version>\bin\client folder
and that this folder is on your system path.

Warning: matlabroot\toolbox\local\pathdef.m not found.
Toolbox Path Cache is not being used. Type ’help toolbox_path_cache’
for more info. The pathdef.m file defines the MATLAB startup path.
MATLAB Compiler does not include this file in the generated CTF archive
because the MCR path is a subset of the full MATLAB path.
This message can be ignored.

Undefined function or variable ’matlabrc’. When MATLAB or the MCR
starts, they attempt to execute the M-file matlabrc.m. This message means
that this file cannot be found.

8-21

8 Troubleshooting

To work around this, try each of these suggestions in this order:

• Ensure that your application runs in MATLAB (uncompiled) without this
error.

• Ensure that MATLAB starts up without this error.

• Verify that the generated CTF archive contains a file called matlabrc.m.

• Verify that the generated code (in the *_mcc_component_data.c* file) adds
the CTF archive folder containing matlabrc.m to the MCR path.

• Delete the *_mcr folder and rerun the application.

• Recompile the application.

This MATLAB file does not have proper version information and
may be corrupt. Please delete the extraction directory and
rerun the application. The M-file <M-file> cannot be executed.
MATLAB:err_parse_cannot_run_m_file. This message is an indication
that the MCR has found nonencrypted M-files on its path and has attempted
to execute them. This error is often caused by the use of addpath, either
explicitly in your application, or implicitly in a startup.m file. If you use
addpath in a compiled application, you must ensure that the added folders
contain only data files. (They cannot contain M-files, or you’ll get this error.)

To work around this, protect your calls to addpath with the isdeployed
function.

This application has failed to start because mclmcrrt7x.dll was
not found. Re-installing the application may fix this problem.
mclmcrrt7x.dll contains the public interface to the MCR. This library must
be present on all machines that run applications generated by MATLAB
Compiler. Typically, this means that either the MCR is not installed on this
machine, or that the PATH does not contain the folder where this DLL is
located.

To work around this, install the MCR or modify the path appropriately. The
path must contain <mcr_root>/<version>/runtime/<arch>, for example:
c:\mcr\v73\runtime\win32|win64.

8-22

Deployed Applications

Linker cannot find library and fails to create standalone application
(win32 and win64). If you try building your standalone application without
mbuild, you must link to the following dynamic library:

mclmcrrt.lib

This library is found in one of the following locations, depending on your
architecture:

matlabroot\extern\lib\win32\arch
matlabroot\extern\lib\win64\arch

where arch is microsoft, watcom, or lcc.

Version ’GCC_4.2.0’ not found. When running on Linux platforms, users
may report that a run time error occurs that states that the GCC_4.2.0 library
is not found by applications built with MATLAB Compiler.

To resolve this error, do the following:

1 Navigate to matlabroot/sys/os/glnx86.

2 Rename the following files with a prefix of old_:

• libgcc_s.so.1

• libstdc++.so.6.0.8

• libgfortran.so.1.0.0

For example, rename libgcc_s.so.1 to old_libgcc_s.so.1. you must
rename all three of the above files. Alternately, you can create a subfolder
named old and move the files there.

Error: library mclmcrrt76.dll not found. This error can occur for the
following reasons:

• The machine on which you are trying to run the application an different,
incompatible version of the MCR installed on it than the one the application
was originally built with.

• You are not running a version of MATLAB Compiler compatible with the
MCR version the application was built with.

8-23

8 Troubleshooting

To solve this problem, on the deployment machine, install the version of
MATLAB you used to build the application.

Invalid .NET Framework.\n Either the specified framework was not
found or is not currently supported. This error occurs when the .NET
Framework version your application is specifying (represented by n) is not
supported by the current version of MATLAB Compiler.

MATLAB:I18n:InconsistentLocale. The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems.
This may affect your ability to display certain characters. For information
about changing the locale settings, see your operating system Help.

8-24

9

Limitations and
Restrictions

• “Limitations About What May Be Compiled” on page 9-2

• “Unsupported Functions” on page 9-9

9 Limitations and Restrictions

Limitations About What May Be Compiled

In this section...

“Compiling MATLAB and Toolboxes” on page 9-2

“Fixing Callback Problems: Missing Functions” on page 9-3

“Finding Missing Functions in an M-File” on page 9-5

“Suppressing Warnings on the UNIX System” on page 9-5

“Cannot Use Graphics with the -nojvm Option” on page 9-6

“Cannot Create the Output File” on page 9-6

“No M-File Help for Compiled Functions” on page 9-6

“No MCR Versioning on Mac OS X” on page 9-6

“Older Neural Networks Not Deployable with MATLAB® Compiler” on
page 9-7

“Restrictions on Calling PRINTDLG with Multiple Arguments in Compiled
Mode” on page 9-7

“Compiling a Function with WHICH Does Not Search Current Working
Directory” on page 9-8

Compiling MATLAB and Toolboxes
MATLAB Compiler supports the full MATLAB language and almost all
toolboxes based on MATLAB. However, some limited MATLAB and toolbox
functionality is not licensed for compilation.

• Most of the prebuilt graphical user interfaces included in MATLAB and its
companion toolboxes will not compile.

• Functionality that cannot be called directly from the command line will
not compile.

• Some toolboxes, such as Symbolic Math Toolbox™, will not compile.

Compiled applications can only run on operating systems that run MATLAB.
Also, since the MCR is approximately the same size as MATLAB, applications
built with MATLAB Compiler need specific storage memory and RAM to

9-2

Limitations About What May Be Compiled

operate. For the most up-to-date information about system requirements, go
to the MathWorks Web site.

To see a full list of MATLAB Compiler limitations, visit
http://www.mathworks.com/products/compiler/compiler_support.html.

Note See “Unsupported Functions” on page 9-9 for a list of functions that
cannot be compiled.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler creates a standalone application, it compiles the
M-file(s) you specify on the command line and, in addition, it compiles any
other M-files that your M-file(s) calls. MATLAB Compiler uses a dependency
analysis, which determines all the functions on which the supplied M-files,
MEX-files, and P-files depend. The dependency analysis may not locate a
function if the only place the function is called in your M-file is a call to the
function either

• In a callback string

• In a string passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from depfun in .mat files
that get loaded by compiled applications. Use the mcc -a argument or the
%#function pragma to identify .mat file classes or functions that should be
supported by the load command.

MATLAB Compiler does not look in these text strings for the names of
functions to compile.

Symptom
Your application runs, but an interactive user interface element, such as
a push button, does not work. The compiled application issues this error
message:

9-3

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/products/compiler/compiler_support.html

9 Limitations and Restrictions

An error occurred in the callback: change_colormap
The error message caught was : Reference to unknown function

change_colormap from FEVAL in stand-alone mode.

Workaround
There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as strings

• Specifying callbacks with function handles

• Using the -a option

Specifying Callbacks as Strings. Create a list of all the functions that are
specified only in callback strings and pass these functions using separate
%#function pragma statements. This overrides the product’s dependency
analysis and instructs it to explicitly include the functions listed in the
%#function pragmas.

For example, the call to the change_colormap function in the sample
application, my_test, illustrates this problem. To make sure MATLAB
Compiler processes the change_colormap M-file, list the function name in the
%#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
'Style', 'pushbutton',...
'Position',[10 10 133 25],...
'String', 'Make Black & White',...
'CallBack','change_colormap');

Specifying Callbacks with Function Handles. To specify the callbacks
with function handles, use the same code as in the example above and replace
the last line with

9-4

Limitations About What May Be Compiled

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see “Specifying
the Value of Callback Function Properties” in the MATLAB Programming
Fundamentals documentation.

Using the -a Option. Instead of using the %#function pragma, you can
specify the name of the missing M-file on the MATLAB Compiler command
line using the -a option.

Finding Missing Functions in an M-File
To find functions in your application that may need to be listed in a
%#function pragma, search your M-file source code for text strings specified
as callback strings or as arguments to the feval, fminbnd, fminsearch, funm,
and fzero functions or any ODE solvers.

To find text strings used as callback strings, search for the characters
“Callback” or “fcn” in your M-file. This will find all the Callback properties
defined by Handle Graphics® objects, such as uicontrol and uimenu. In
addition, this will find the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

Suppressing Warnings on the UNIX System
Several warnings may appear when you run a standalone application on the
UNIX system. This section describes how to suppress these warnings.

• To suppress the app-defaults warnings, set XAPPLRESDIR to point to
<mcr_root>/<ver>/X11/app-defaults.

• To suppress the libjvm.so warning, make sure you set the dynamic library
path properly for your platform. See “Directories Required for Run-Time
Deployment” on page 10-5.

You can also use the MATLAB Compiler option -R -nojvm to set your
application’s nojvm run-time option, if the application is capable of running
without Java.

9-5

9 Limitations and Restrictions

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you
will get a run-time error.

Cannot Create the Output File
If you receive the error

Can't create the output file filename

there are several possible causes to consider:

• Lack of write permission for the folder where MATLAB Compiler is
attempting to write the file (most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler is attempting
to write the file (most likely the current working folder).

• If you are creating a standalone application and have been testing it, it is
possible that a process is running and is blocking MATLAB Compiler from
overwriting it with a new version.

No M-File Help for Compiled Functions
If you create an M-file with self-documenting online help by entering text on
one or more contiguous comment lines beginning with the second line of the
file and then compile it, the results of the command

help filename

will be unintelligible.

Note Due to performance reasons, M-file comments are stripped out before
MCR encryption.

No MCR Versioning on Mac OS X
The feature that allows you to install multiple versions of the MCR on the
same machine is currently not supported on Mac OS X. When you receive
a new version of MATLAB , you must recompile and redeploy all of your

9-6

Limitations About What May Be Compiled

applications and components. Also, when you install a new MCR onto a target
machine, you must delete the old version of the MCR and install the new one.
You can only have one version of the MCR on the target machine.

Older Neural Networks Not Deployable with
MATLAB Compiler
Loading networks saved from older Neural Network Toolbox™ versions
requires some initialization routines that are not deployable. Therefore, these
networks cannot be deployed without first being updated.

For example, deploying with Neural Network Toolbox Version 5.0.1 (2006b)
and MATLAB Compiler Version 4.5 (R2006b) yields the following errors at
run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
function "initwb".

Error in ==> updatenet at 40
Error in ==> network.loadobj at 10

??? Undefined function or method 'sim' for input
arguments of type 'struct'.
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple
Arguments in Compiled Mode
In compiled mode, only one argument can be present in a call to the MATLAB
printdlg function (for example, printdlg(gcf)).

You will not receive an error when making at call to printdlg with multiple
arguments. However, when an application containing the multiple-argument
call is compiled, the compile will fail with the following error message:

Error using = => printdlg at 11
PRINTDLG requires exactly one argument

9-7

9 Limitations and Restrictions

Compiling a Function with WHICH Does Not Search
Current Working Directory
Using which, as in this example:

function pathtest
which myFile.mat
open('myFile.mat')

does not cause the current working folder to be searched in deployed
applications. In addition, it may cause unpredictable behavior of the open
function.

Use one of the following solutions as alternatives to using which:

1 Use the pwd function to explicitly point to the file in the current folder, as
follows:

open([pwd 'myFile.mat'])

2 Rather than using the general open function, use load or other specialized
functions for your particular file type, as load explicitly checks for the file
in the current folder. For example:

load myFile.mat

3 Use addpath(pwd) to add the current folder to the deployed application’s
file search path. This folder should not include any unencrypted M-files, as
these cannot be executed by the compiled application.

4 Include your file using the Other Files area of your project using
deploytool (and the -a flag using mcc).

9-8

Unsupported Functions

Unsupported Functions

Note Due to the number of active and ever-changing list of MathWorks
products and functions, this is not a complete list of functions that can not be
compiled. If you have a question as to whether a specific MathWorks product’s
function is able to be compiled or not, the definitive source is that product’s
documentation, not the MATLAB Compiler documentation.

Some functions are not supported in standalone mode; that is, you cannot
compile them with MATLAB Compiler. These functions are in the following
categories:

• Functions that print or report MATLAB code from a function, for example,
the MATLAB help function or debug functions, will not work.

• Simulink® functions, in general, will not work.

• Functions that require a command line, for example, the MATLAB lookfor
function, will not work.

• clc, home, and savepath will not do anything in deployed mode.

• Tools that allow run-time manipulation of figures

Returned values from standalone applications will be 0 for successful
completion or a nonzero value otherwise.

In addition, there are functions that have been identified as nondeployable
due to licensing restrictions.

mccExcludedFiles.log lists all the functions and files excluded by mcc if
they can not be compiled. It is created after each attempted build if there are
functions or files that cannot be compiled.

List of Unsupported Functions

add_block

add_line

9-9

9 Limitations and Restrictions

List of Unsupported Functions (Continued)

applescript

close_system

colormapeditor

createClassFromWsdl

dbclear

dbcont

dbdown

dbquit

dbstack

dbstatus

dbstep

dbstop

dbtype

dbup

delete_block

delete_line

depfun

doc

echo

edit

fields

figure_palette

get_param

help

home

inmem

9-10

Unsupported Functions

List of Unsupported Functions (Continued)

keyboard

linmod

mislocked

mlock

more

munlock

new_system

open_system

pack

plotbrowser

plotedit

plottools

profile

profsave

propedit

propertyeditor

publish

rehash

restoredefaultpath

run

segment

set_param

sim

simget

simset

sldebug

type

9-11

9 Limitations and Restrictions

9-12

10

Reference Information

• “Directories Required for Development and Testing” on page 10-2

• “Directories Required for Run-Time Deployment” on page 10-5

• “MATLAB® Compiler Licensing” on page 10-8

• “Using MCR Installer Command Line Options” on page 10-9

10 Reference Information

Directories Required for Development and Testing

In this section...

“Overview” on page 10-2

“Path for Java Development on All Platforms ” on page 10-2

“Path Modifications Required for Accessibility” on page 10-2

“Windows Settings for Development and Testing” on page 10-3

“UNIX Settings for Development and Testing” on page 10-3

Overview
The following information is for programmers developing applications that
use libraries or components that contain compiled M-code. These settings
are required on the machine where you are developing your application.
Other settings required by end users at run time are described in “Directories
Required for Run-Time Deployment” on page 10-5.

Note For matlabroot, substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

Path for Java Development on All Platforms
There are additional requirements when programming in the Java
programming language. See “Deploying Applications That Call the Java
Native Libraries” on page 5-29.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®,
you must add the following DLLs to your Windows path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

10-2

Directories Required for Development and Testing

Windows Settings for Development and Testing
When programming with components that are generated with MATLAB
Compiler, add the following folder to your system PATH environment variable:

matlabroot\runtime\win32|win64

UNIX Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line.

Linux

setenv LD_LIBRARY_PATH

matlabroot/runtime/glnx86:

matlabroot/bin/glnx86:

matlabroot/sys/os/glnx86:

matlabroot/sys/java/jre/glnx86/jre/lib/i386/native_threads:

matlabroot/sys/java/jre/glnx86/jre/lib/i386/server:

matlabroot/sys/java/jre/glnx86/jre/lib/i386:

setenv XAPPLRESDIR matlabroot/X11/app-defaults

Linux x86-64

setenv LD_LIBRARY_PATH

matlabroot/runtime/glnxa64:

matlabroot/bin/glnxa64:

matlabroot/sys/os/glnxa64:

matlabroot/sys/java/jre/glnxa64/jre/lib/amd64/native_threads:

matlabroot/sys/java/jre/glnxa64/jre/lib/amd64/server:

matlabroot/sys/java/jre/glnxa64/jre/lib/amd64:

setenv XAPPLRESDIR matlabroot/X11/app-defaults

Solaris 64

setenv LD_LIBRARY_PATH

matlabroot/runtime/sol64:

10-3

10 Reference Information

matlabroot/bin/sol64:

matlabroot/sys/os/sol64:

matlabroot/sys/java/jre/sol64/jre/lib/sparcv9/native_threads:

matlabroot/sys/java/jre/sol64/jre/lib/sparcv9/server:

matlabroot/sys/java/jre/sol64/jre/lib/sparcv9:

setenv XAPPLRESDIR matlabroot/X11/app-defaults

Intel Mac (Maci)

setenv DYLD_LIBRARY_PATH

matlabroot/runtime/maci:

matlabroot/bin/maci:

matlabroot/sys/os/maci:

/System/Library/Frameworks/JavaVM.framework/JavaVM:

/System/Library/Frameworks/JavaVM.framework/Libraries

setenv XAPPLRESDIR matlabroot/X11/app-defaults

Intel Mac (Maci64)

setenv DYLD_LIBRARY_PATH

matlabroot/runtime/maci64:

matlabroot/bin/maci64:

matlabroot/sys/os/maci64:

/System/Library/Frameworks/JavaVM.framework/JavaVM:

/System/Library/Frameworks/JavaVM.framework/Libraries

setenv XAPPLRESDIR matlabroot/X11/app-defaults

10-4

Directories Required for Run-Time Deployment

Directories Required for Run-Time Deployment

In this section...

“General Path Guidelines” on page 10-5

“Path for Java Applications on All Platforms” on page 10-5

“Windows Path for Run-Time Deployment” on page 10-5

“UNIX Paths for Run-Time Deployment” on page 10-6

General Path Guidelines
Regardless of platform, be aware of the following guidelines with regards to
placing specific folders on the path:

• Always avoid including bin or arch on the path. Failure to do so may
inhibit ability to run multiple MCR instances.

• Ideally, set the environment in a separate shell script to avoid runtime
errors caused by path-related issues.

Path for Java Applications on All Platforms
When your users run applications that contain compiled M-code, you must
instruct them to set the path so that the system can find the MCR.

Note When you deploy a Java application to end users, they must set the
class path on the target machine.

The system needs to find .jar files containing the MATLAB libraries. To tell
the system how to locate the .jar files it needs, specify a classpath either in
the javac command or in your system environment variables.

Windows Path for Run-Time Deployment
The following folder should be added to the system path:

mcr_root\version\runtime\win32|win64

10-5

10 Reference Information

where mcr_root refers to the complete path where the MCR library archive
files are installed on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install
the MCR.

Note If you are running the MCR Installer on a shared folder, be aware that
other users of the share may need to alter their system configuration.

UNIX Paths for Run-Time Deployment

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line. The setenv command is
specific to the C shell (csh). See “Compiling and Linking MAT-File Programs”
for more information.

Linux

setenv LD_LIBRARY_PATH

mcr_root/version/runtime/glnx86:

mcr_root/version/bin/glnx86:

mcr_root/version/sys/os/glnx86:

mcr_root/version/sys/java/jre/glnx86/jre/lib/i386/native_threads:

mcr_root/version/sys/java/jre/glnx86/jre/lib/i386/server:

mcr_root/version/sys/java/jre/glnx86/jre/lib/i386:

setenv XAPPLRESDIR mcr_root/version/X11/app-defaults

Linux x86-64

setenv LD_LIBRARY_PATH

mcr_root/version/runtime/glnxa64:

mcr_root/version/bin/glnxa64:

mcr_root/version/sys/os/glnxa64:

mcr_root/version/sys/java/jre/glnxa64/jre/lib/amd64/native_threads:

10-6

Directories Required for Run-Time Deployment

mcr_root/version/sys/java/jre/glnxa64/jre/lib/amd64/server:

mcr_root/version/sys/java/jre/glnxa64/jre/lib/amd64:

setenv XAPPLRESDIR mcr_root/version/X11/app-defaults

Solaris 64

setenv LD_LIBRARY_PATH

mcr_root/version/runtime/sol64:

mcr_root/version/bin/sol64:

mcr_root/version/sys/os/sol64:

mcr_root/version/sys/java/jre/sol64/jre/lib/sparcv9/native_threads:

mcr_root/version/sys/java/jre/sol64/jre/lib/sparcv9/server:

mcr_root/version/sys/java/jre/sol64/jre/lib/sparcv9:

setenv XAPPLRESDIR mcr_root/version/X11/app-defaults

Intel Mac (Maci)

setenv DYLD_LIBRARY_PATH

mcr_root/version/runtime/maci:

mcr_root/version/bin/maci:

mcr_root/version/sys/os/maci:

/System/Library/Frameworks/JavaVM.framework/JavaVM:

/System/Library/Frameworks/JavaVM.framework/Libraries

setenv XAPPLRESDIR mcr_root/version/X11/app-defaults

Intel Mac (Maci64)

setenv DYLD_LIBRARY_PATH

mcr_root/version/runtime/maci64:

mcr_root/version/bin/maci64:

mcr_root/version/sys/os/maci64:

/System/Library/Frameworks/JavaVM.framework/JavaVM:

/System/Library/Frameworks/JavaVM.framework/Libraries

setenv XAPPLRESDIR mcr_root/version/X11/app-defaults

10-7

10 Reference Information

MATLAB Compiler Licensing

Using MATLAB Compiler Licenses for Development
You can run MATLAB Compiler from the MATLAB command prompt
(MATLAB mode) or the DOS/UNIX prompt (standalone mode).

Running MATLAB Compiler in MATLAB Mode
When you run MATLAB Compiler from “inside” of the MATLAB environment,
that is, you run mcc from the MATLAB command prompt, you hold the
MATLAB Compiler license as long as MATLAB remains open. To give up the
MATLAB Compiler license, exit MATLAB.

Running MATLAB Compiler in Standalone Mode
If you run MATLAB Compiler from a DOS or UNIX prompt, you are running
from “outside” of MATLAB. In this case, MATLAB Compiler

• Does not require MATLAB to be running on the system where MATLAB
Compiler is running

• Gives the user a dedicated 30-minute time allotment during which the user
has complete ownership over a license to MATLAB Compiler

Each time a user requests MATLAB Compiler , the user begins a 30-minute
time period as the sole owner of the MATLAB Compiler license. Anytime
during the 30-minute segment, if the same user requests MATLAB Compiler ,
the user gets a new 30-minute allotment. When the 30-minute interval has
elapsed, if a different user requests MATLAB Compiler , the new user gets
the next 30-minute interval.

When a user requests MATLAB Compiler and a license is not available, the
user receives the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are
available, the user gets the license and no message is displayed. The best
way to guarantee that all MATLAB Compiler users have constant access to
MATLAB Compiler is to have an adequate supply of licenses for your users.

10-8

Using MCR Installer Command Line Options

Using MCR Installer Command Line Options

In this section...

“Overview” on page 10-9

“Displaying MCR Installer Location and Related Information” on page 10-9

“Accessing MCR Installer Command Line Options on Windows Systems” on
page 10-10

“Accessing MCR Installer Command Line Options on UNIX and Linux
Systems” on page 10-12

Overview
If you distribute your compiled components to users who do not have
MATLAB installed on their systems, they must install the MATLAB Compiler
Runtime (MCR). To install the MCR, users of your component must run the
MCR Installer for their platform: MCRInstaller.exe for Windows systems
and MCRInstaller.bin for UNIX and Linux systems. (The MathWorks uses a
different MCR installation program on Macintosh systems.)

The MCR Installer supports command line options that can be helpful in
certain instances. For example, if you want to automate installation of the
MCR for users of your component, you might want to run the MCR Installer
in silent mode, where no interaction with the user is required. To accomplish
this, you must use MCR Installer command line options. The following
sections describe some commonly used command line options for Windows,
UNIX, and Linux systems.

Displaying MCR Installer Location and Related
Information
Use the mcrinstaller command to display information about the location
of available MCR installers on your system. See the Chapter 11, “Function
Reference” for more information about using this command.

10-9

10 Reference Information

Accessing MCR Installer Command Line Options on
Windows Systems
The following table lists some frequently used command line options for the
MCR Installer on Windows systems (MCRInstaller.exe). The MCR installer
is implemented using both an InstallShield wizard and the Windows Installer
tool, Msiexec.exe. Both installers support command line options and you can
specify these options on the MCR installer command line. To specify Msiexec
command line arguments, you must use the InstallShield /v argument. For
more information about these tools, see the appropriate documentation
from their vendors: InstallShield (the Basic MSI project options only) and
Msiexec.exe. Examples of using these command line options follow.

Frequently Used MCR Installation Options on Windows Systems

Option Description

/a Performs installation as an administrator. This
option is useful if you want to uncompress the
installation so you can extract the MSI install
and repackage it with your options. The /a
option requires Windows Administrator access.

/Ldecimal_language_ID Specifies the language (decimal_language_ID)
to be used by a multi-language installation
program.

/n Runs without a GUI. This is an Msiexec.exe
option that must be passed using the /v option.

/q Runs in quiet mode. This is an Msiexec.exe
option that must be passed using the /v option.

/s Runs the installation in silent mode. There
must be a space after /s.

/v Pass command-line options and values of public
properties to Msiexec.exe. Make sure there
is no space after /v. Also, you can use double
quotation marks (" ") to delimit the arguments
to /v, but you still cannot have a space between
/v and the enclosing quotation marks.

10-10

http://helpnet.acresso.com/robo/projects/installshield11helplib/IHelpSetup_EXECmdLine.htm
http://helpnet.acresso.com/robo/projects/installshield11helplib/IHelpCmdLineMSI.htm

Using MCR Installer Command Line Options

Frequently Used MCR Installation Options on Windows Systems
(Continued)

Option Description

/x Uninstall the MCR.

/w Wait until the installation is complete before
exiting.

Example: Performing a Silent Installation
To perform a silent installation, you must use the /s option, to suppress
the InstallShield wizard, and specify the /q and /n options to suppress the
Msiexec GUI. In the following example, you must use the /v option to pass
the Msiexe options, and there is no space between the /v and the quotation
mark that encloses the Msiexec options. The example specifies the folder
where you want to install the MCR. You only need to specify this if you don’t
want to use the default installation folder:matlabroot\MATLAB Compiler
Runtime\mcrversion, where matlabroot is the root folder for the MATLAB
installation and mcrversion is the version number of the MCR. The example
also specifies the language, using the /L option

MCRInstaller.exe /L1033 /s /v"/qn INSTALLDIR=D:\MCR\release"

Example: Blocking the Command Prompt
By using the /w option, you can initiate the MCR installer without blocking
the command prompt. The is useful for silent installations.

To block the command prompt:

start /WAIT MCRInstaller.exe /w

To perform a silent install from a script and block command prompt:

start /WAIT MCRInstaller.exe /w /s /v/qn

To perform a silent uninstall from a script and block command prompt:

start /WAIT MCRInstaller.exe /w /x /v/qn

10-11

10 Reference Information

Example: Requesting a Verbose Log of the Install Process
The following command causes the installer to create a verbose log of the
install process in C:\log.txt. For information about the Msiexec options
passed with /v, see the Msiexec documentation.

MCRInstaller.exe /v"/L*v \"C:\log.txt\""

.

Accessing MCR Installer Command Line Options on
UNIX and Linux Systems
The following table lists some frequently used command line options for the
MCR Installer on UNIX and Linux systems (MCRInstaller.bin). The MCR
Installer on UNIX and Linux systems is implemented using the InstallShield
Universal Java installer. The universal installer supports two types of
command line options: installation launcher options and run-time options.
You can specify any mix of these options on the MCR Installer command line.
If you extract the Jar file from the installation launcher (using installation
launcher options) and call it directly, you must use the run-time options.
Examples of using these command line options follow.

Frequently Used MCR Installer Options on UNIX or Linux Systems

Option Description

-cp:a <classpath> Appends (add to the end) <classpath> to the
launcher’s classpath.

-cp:p <classpath> Prepends (add to the beginning) <classpath> to
the launcher’s classpath

-is:extract Extracts the contents of the archive.

-is:help Displays command line option help text and
exits.

-is:log <filename> Specifies file in which to write debug messages.

10-12

http://helpnet.acresso.com/robo/projects/is11universalhelplibrary/topics/commandline_options_launchers.htm
http://helpnet.acresso.com/robo/projects/is11universalhelplibrary/topics/commandline_options_run.htm

Using MCR Installer Command Line Options

Frequently Used MCR Installer Options on UNIX or Linux Systems
(Continued)

Option Description

-log Specifies file in which to write debug messages
(run-time version)

-is:nospacecheck Turns off launcher disk space checking.

-P Specifies properties of a product bean, such as
the bean ID.

-is:silent Prevents the display of the application launcher
UI. To run in silent mode, use the -silent
run-time option.

-silent Specifies to install or uninstall the
product in silent mode, where the
installation/uninstallation is performed
with no user interaction.

-is:tempdir <dir> Specifies the temporary folder to be used by the
launcher.

Uninstalling the MCR on UNIX Systems
To remove an MCR installation on UNIX systems, run the uninstaller.bin
program.

It is important to run the uninstaller, rather than just removing the MCR
installation folder using the rm command, because an MCR installation
affects other aspects of your environment. For example, the MCR installer
creates a folder named InstallShield in your UNIX home folder that stores
information about your particular MCR installation. When you use the MCR
uninstaller, it removes some of these additional folders.

To run the MCR uninstaller, follow this procedure:

1 Navigate to your MCR installation folder using the cd command.

2 cd into the _uninst folder

10-13

10 Reference Information

3 Run the uninstaller.bin program. If you want to run the uninstaller
noninteractively, specify the -silent option on the command line.

Example: Extracting the Jar File from the MCR Installer
The MathWorks includes the JRE required by the MCR Installer. However,
your Linux system might not support this version of the JRE. To work
around this issue, you can extract the Jar file from the MCR installer
(MCRInstaller.bin) and call the Jar file directly, using the JRE that works
with your system. The following provides a step-by-step instructions.

1 Extract the Java Jar file from the application launcher, using the
is:extract installation launcher option.

MCRInstaller.bin -is:extract

This option extracts the components, including the Jar filesetup.jar.

2 Run the Jar file using the JRE that works with your system.

java -jar setup.jar

This starts the installer GUI.

Example: Performing a Noninteractive (Silent) Installation of
the MCR
To perform a noninteractive (silent) installation, you must use the -silent
run-time option. This example also uses the -P option to specify a particular
Java bean.

MCRInstaller.bin -P bean421.installLocation="desiredInstallPath" -silent

10-14

11

Function Reference

Pragmas (p. 11-2) Directives to MATLAB Compiler

Command-Line Tools (p. 11-2) Deployment-related commands

API Functions (p. 11-3) Deployment API-related commands

11 Function Reference

Pragmas
%#external

%#function Pragma to help MATLAB Compiler
locate functions called through
feval, eval, or Handle Graphics®
callback

Command-Line Tools
builder2prj Convert project files with suffixes

.cbl, .nbl, and .mxl to .prj
(deploytool) format

ctfroot Root folder of application in deployed
mode

deployprint Use to print (as substitute for
MATLAB print function) when
working with deployed Windows
applications

deploytool Open Deployment Tool, GUI for
MATLAB Compiler

hardcopy Saves figure window to file

isdeployed Determine whether code is running
in deployed or MATLAB mode

ismcc Test if code is running during
compilation process (using mcc)

mbuild Compile and link source files into
standalone application or shared
library

mcc Invoke MATLAB Compiler

11-2

API Functions

mcrinstaller Displays version and location
information for MCR installer(s)
corresponding to current platform.

mcrversion Determine version of installed
MATLAB Compiler Runtime (MCR)

API Functions
<library>Initialize[WithHandlers]Initializes MCR instance associated

with library

<library>Terminate Frees all resources allocated by MCR
instance associated with library

GetMcrID Return identifier of MCR instance
associated with software component
libname

getmcruserdata Retrieve MATLAB array value
associated with given string key

mclGetLogFileName Retrieves name of log file used by
the MCR

mclGetMCRUserData Retrieve MATLAB data associated
with string key of MCR instance
uniquely identified by mcrID

mclInitializeApplication Sets up application state shared by
all (future) MCR instances created
in current process. Called only once
per process.

mclIsJVMEnabled Determines if MCR was launched
with instance of a Java Virtual
Machine (JVM)

mclIsMCRInitialized Determines if MCR has been
properly initialized

11-3

11 Function Reference

mclIsNoDisplaySet Determines if -nodisplay mode is
enabled.

mclKillAllFigures Finds and deletes open figures

mclSetCmdLineUserData Associate MATLAB data value with
string key of MCR instance uniquely
identified by mcrID

mclSetMCRUserData Associate MATLAB data value with
string key of MCR instance uniquely
identified by mcrID

mclTerminateApplication Closes down all MCR-internal
application state. Called only once
per process.

mclWaitForFiguresToDie Enables deployed applications to
process Handle Graphics events,
enabling figure windows to remain
displayed.

setmcruserdata Associate MATLAB data value with
string key

11-4

12

Functions — Alphabetical
List

%#external
%#function
builder2prj
ctfroot
deployprint
deploytool
GetMcrID
getmcruserdata
hardcopy
isdeployed
ismcc
<library>Initialize[WithHandlers]
<library>Terminate
mbuild
mcc
mclGetLogFileName
mclGetMCRUserData
mclInitializeApplication
mclIsJVMEnabled
mclIsMCRInitialized
mclIsNoDisplaySet
mclKillAllFigures
mclSetCmdLineUserData
mclSetMCRUserData
mclTerminateApplication
mclWaitForFiguresToDie

12 Functions — Alphabetical List

mcrinstaller
mcrversion
setmcruserdata

12-2

%#external

Informs MATLAB® Compiler™ that the implementation of the
MATLAB function containing this pragma is supplied by the user as a
C/C++ file.

Syntax %#external

Description This pragma affects only the single function in which it appears,
and any MATLAB function can contain this pragma (local, global,
private, or method).

If you compile a program that contains the %#external pragma,
you must explicitly pass each file that contains this pragma on
the mcc command line. mcc also expects a .c or .cpp file with the
implementation to be passed in.

This pragma is not executed in MATLAB. It is treated as a comment.
Only the MATLAB code is executed.

When you use this pragma, MATLAB Compiler generates an additional
header file called function_name_external.h. In this header file,
function_name is the name of the initial MATLAB function containing
the %#external pragma. This header file contains the extern
declaration of the function that the user must provide. This function
must conform to the same interface as code generated by MATLAB
Compiler.

Examples In this example, the collect function calls a user-supplied helper
function called collect_one, implemented in C/C++.

function collect

y = zeros(1,100); % pre-allocate the matrix
for i = 1:100

y(i) = collect_one;
end

function y = collect_one
%#EXTERNAL

12-3

%#external

persistent t;

if (isempty(t))
t = 0;

else
t = t+0.05;

end
y = sin(t);

For complete examples, see “Interfacing M-Code to C/C++ Code” on
page 5-14.

Related
Links

• “Interfacing M-Code to C/C++ Code” on page 5-14

• External Interfaces documentation

12-4

%#function

Purpose Pragma to help MATLAB Compiler locate functions called through
feval, eval, or Handle Graphics® callback

Syntax %#function function1 [function2 ... functionN]

%#function object_constructor

Description The %#function pragma informs MATLAB Compiler that the specified
function(s) will be called through an feval, eval, or Handle Graphics
callback.

Use the %#function pragma in standalone C and C++ applications
to inform MATLAB Compiler that the specified function(s) should
be included in the compilation, whether or not MATLAB Compiler’s
dependency analysis detects the function(s). It is also possible to include
objects by specifying the object constructor.

Without this pragma, the product’s dependency analysis will not be
able to locate and compile all M-files used in your application. This
pragma adds the top-level function as well as all the subfunctions in
the file to the compilation.

Examples Example 1

function foo
%#function bar

feval('bar');

end %function foo

By implementing this example, MATLAB Compiler is notified that
function bar will be included in the compilation and is called through
feval.

Example 2

function foo
%#function bar foobar

12-5

%#function

feval('bar');
feval('foobar');

end %function foo

In this example, multiple functions (bar and foobar) are included in
the compilation and are called through feval.

12-6

builder2prj

Purpose Convert project files with suffixes .cbl, .nbl, and .mxl to .prj
(deploytool) format

Syntax builder2prj
builder2prj([project.cbl,project.nbl,project.mxl])
builder2prj([project.cbl,project.nbl,project.mxl],

new_project.prj)

Description This function converts project files in older formats such as.cbl, .nbl,
and .mxl, to a format usable by deploytool (.prj).

Examples Example 1

builder2prj;

Entering this command opens the Builder Project File dialog box, which
enables you to browse for the project you wish to convert. Navigate to
the .cbl, .nbl, or .mxl project file, select the file name, and click Open
to start the conversion process.

Example 2

builder2prj(my_project.cbl);

In this example, builder2prj locates my_project.cbl in your present
working folder and converts the file to deploytool-compatible format
(.prj format). In this example, after builder2prj runs, only the file
suffix (.cbl) has changed. The new project name is the same as the old
project name, but with a new suffix (my_project.prj).

Example 3

builder2prj(my_project.mxl,renamed_project.prj);

By specifying a second file name argument, you can choose a specific
name for your deploytool-compatible project. In this example,
my_project.mxl is located in your present working folder and

12-7

builder2prj

builder2prj is run, converting the .mxl project to a .prj project. The
new project is named renamed_project.prj.

12-8

ctfroot

Purpose Root folder of application in deployed mode

Syntax ctfroot

Description root = ctfroot returns a string that is the name of the folder where
the CTF file for the deployed application is expanded.

To determine the location of various toolbox folders in deployed mode,
use the toolboxdir function.

Example appRoot = ctfroot; will return the root of your applications in this
form: application_name_mcr.

Use this function to access any file that the user would have included in
their project (excluding the ones in the packaging folder).

12-9

deployprint

Purpose Use to print (as substitute for MATLAB print function) when working
with deployed Windows applications

Syntax deployprint

Description In cases where the print command would normally be issued when
running MATLAB software, use deployprint when working with
deployed applications.

deployprint is available on all platforms, however it is only required
on Windows.

deployprint supports all of the input arguments supported by print
except for the following.

Argument Description

-d Used to specify the type of the output (for
example. .JPG, .BMP, etc.). deployprint only
produces .BMP files.

Note To print to a file, use the print function.

-noui Used to suppress printing of user interface
controls. Similar to use in MATLAB print
function.

-setup The -setup option is not supported.

-s windowtitle MATLAB Compiler does not support
Simulink®.

deployprint supports a subset of the figure properties supported by
print. The following are supported:

• PaperPosition

• PaperSize

12-10

deployprint

• PaperUnits

• Orientation

• PrintHeader

Note deployprint requires write access to the file system in order to
write temporary files.

Examples The following is a simple example of how to print a figure in your
application, regardless of whether the application has been deployed
or not:

figure;
plot(1:10);
if isdeployed
deployprint;

else
print(gcf);

end

See Also isdeployed, print

12-11

deploytool

Purpose Open Deployment Tool, GUI for MATLAB Compiler

Syntax deploytool

Description The deploytool command opens the Deployment Tool window, which
is the graphical user interface (GUI) for MATLAB Compiler.

See Chapter 1, “Getting Started”, to get started using the Deployment
Tool to create standalone applications and libraries.

12-12

GetMcrID

Purpose Return identifier of MCR instance associated with software component
libname

Syntax extern "C" long libnameGetMcrID

Description The extern "C" long libnameGetMcrID returns the identifier of
the MCR instance associated with the software component libname.
It allows applications that use more than one MATLAB Compiler
generated software component (and hence, have more than one MCR
instance active in-process) to distinguish between MCR instances
when setting or getting MCR instance specific data. This function is
automatically generated into every component created by MATLAB
Compiler. This command is part of the MCR User Data interface API.
For information about this function, as well as complete examples of
usage, see “Improving Data Access Using the MCR User Data Interface”
on page 4-26.

Example if(!mclInitializeApplication(NULL,0))
{

fprintf(stderr, "Could not initialize the application.
\n");

return -1;
}

if (!libmatrixInitialize())
{

fprintf(stderr,"Could not initialize the library.\n");
return -2;

}

long mcrID = libmatrixGetMcrID();
mxArray *value = mxCreateString("/home/user/config.xml");
if (!mclSetMCRUserData(mcrID, "DCTConfigFile", value))
{

fprintf(stderr, "Could not set DCTConfigFile
MCR user data. \n");

12-13

GetMcrID

return -3;
}

...

See Also mclGetMCRUserData, mclSetMCRUserData

12-14

getmcruserdata

Purpose Retrieve MATLAB array value associated with given string key

Syntax function_value = getmcruserdata(key)

Description The function_value = getmcruserdata(key) command is part of the
MCR User Data interface API. It returns an empty matrix if no such
key exists. For information about this function, as well as complete
examples of usage, see “Improving Data Access Using the MCR User
Data Interface” on page 4-26.

Example function_value =
getmcruserdata('ParallelConfigurationFile');

See Also setmcruserdata

12-15

hardcopy

Purpose Saves figure window to file

Syntax hardcopy(handle,'filename','format')

Description The hardcopy(handle,'filename','format') command saves the
figure window with handle to the designated filename in the specified
format. Legal formats are:

• -dps

• -deps

• -dps2

• -deps2

• -dill

• -dhpgl

Caution

Call this function when converting a figure to pixel data. This can be
necessary in some Web deployments. Do not use this function merely as
a substitute for the print function.

12-16

isdeployed

Purpose Determine whether code is running in deployed or MATLAB mode

Syntax x = isdeployed

Description x = isdeployed returns true (1) when the function is running in
deployed mode and false (0) if it is running in a MATLAB session.

If you include this function in an application and compile the
application with MATLAB Compiler, the function will return true when
the application is run in deployed mode. If you run the application
containing this function in a MATLAB session, the function will return
false.

12-17

ismcc

Purpose Test if code is running during compilation process (using mcc)

Syntax x = ismcc

Description x = ismcc returns true when the function is being executed by mcc
dependency checker and false otherwise.

When this function is executed by the compilation process started by
mcc, it will return true. This function will return false when executed
within MATLAB as well as in deployed mode. To test for deployed mode
execution, use isdeployed. This function should be used to guard
code in matlabrc, or hgrc (or any function called within them, for
example startup.m in the example on this page), from being executed
by MATLAB Compiler (mcc) or any of the Builder products.

In a typical example, a user has ADDPATH calls in their M-code. These
can be guarded from executing using ismcc during the compilation
process and isdeployed for the deployed application or component as
shown in the example on this page.

Example `% startup.m
if(ismcc || isdeployed)

addpath(fullfile(matlabroot,'work'));

See Also isdeployed, mcc, matlabrc

12-18

<library>Initialize[WithHandlers]

Purpose Initializes MCR instance associated with library

Syntax bool libraryInitialize(void)
bool libraryInitializeWithHandlers(

mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler)

Description Each generated library has its own MCR instance. These two functions,
libraryInitialize and libraryInitializeWithHandlers initialize
the MCR instance associated with library. Users must call one of these
functions after calling mclInitializeApplication and before calling
any of the compiled functions exported by the library. Each returns
a boolean indicating whether or not initialization was successful. If
they return false, calling any further compiled functions will result
in unpredictable behavior. libraryInitializeWithHandlers allows
users to specify how to handle error messages and printed text. The
functions passed to libraryInitializeWithHandlers will be installed
in the MCR instance and called whenever error text or regular text
is to be output.

Example bool libtriangleInitialize(void)

bool libtriangleInitializeWithHandlers(
mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler
)

See Also “Library Initialization and Termination Functions” on page 7-27

<library>Terminate

12-19

<library>Terminate

Purpose Frees all resources allocated by MCR instance associated with library

Syntax void libraryTerminate(void)

Description This function should be called after you finish calling the
functions in this MATLAB Compiler-generated library, but before
mclTerminateApplication is called.

Example Call libmatrixInitialize to initialize libmatrix library properly
near the start of your program:

/* Call the library intialization routine and ensure the
* library was initialized properly. */
if (!libmatrixInitialize()){

fprintf(stderr,"Could not initialize the library.\n");
*err = -2;

}
else

...

Near the end of your program (but before calling
mclTerminateApplication) free resources allocated by the
MCR instance associated with library libmatrix:

/* Call the library termination routine */
libmatrixTerminate();
/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
}

See Also “Library Initialization and Termination Functions” on page 7-27

<library>Initialize[WithHandlers]

12-20

mbuild

Purpose Compile and link source files into standalone application or shared
library

Syntax mbuild [option1 ... optionN] sourcefile1 [... sourcefileN]
[objectfile1 ... objectfileN] [libraryfile1 ... libraryfileN]
[exportfile1 ... exportfileN]

Note Supported types of source files are .c, .cpp, .idl, .rc. To
specify IDL source files to be compiled with the Microsoft Interface
Definition Language (MIDL) Compiler, add <filename>.idl to the
mbuild command line. To specify a DEF file, add <filename>.def to
the command line. To specify an RC file, add <filename>.rc to the
command line. Source files that are not one of the supported types are
passed to the linker.

Description mbuild is a script that supports various options that allow you to
customize the building and linking of your code. This table lists the set
of mbuild options. If no platform is listed, the option is available on
both UNIX and Windows.

Option Description

@<rspfile> (Windows only) Include the contents of the text
file <rspfile> as command line arguments to
mbuild.

-<arch> Build an output file for architecture -<arch>.
To determine the value for -<arch>, type
computer('arch') at the MATLAB Command
Prompt on the target machine. Note: Valid
values for -<arch> depend on the architecture
of the build platform.

-c Compile only. Creates an object file only.

12-21

mbuild

Option Description

-D<name> Define a symbol name to the C preprocessor.
Equivalent to a #define <name> directive in
the source.

-D<name>=<value> Define a symbol name and value to the C
preprocessor. Equivalent to a #define <name>
<value> directive in the source.

-f <optionsfile> Specify location and name of options file to
use. Overrides the mbuild default options file
search mechanism.

-g Create an executable containing additional
symbolic information for use in debugging.
This option disables the mbuild default
behavior of optimizing built object code (see
the -O option).

-h[elp] Print help for mbuild.

-I<pathname> Add <pathname> to the list of folders to search
for #include files.

-inline Inline matrix accessor functions (mx*). The
executable generated may not be compatible
with future versions of MATLAB.

-l<name> Link with object library. On Windows,
<name> will be expanded to <name>.lib or
lib<name>.lib and on UNIX to lib<name>.

Note When linking with a library, it is
essential that you first specify the path (with
-I<pathname>, for example).

-L<directory> Add <directory> to the list of folders to search
for libraries specified with the -l option.

12-22

mbuild

Option Description

-lang <language> Specify compiler language. <language> can be
c or cpp. By default, mbuild determines which
compiler (C or C++) to use by inspection of the
source file’s extension. This option overrides
that default.

-n No execute mode. Print out any commands
that mbuild would otherwise have executed,
but do not actually execute any of them.

-O Optimize the object code. Optimization is
enabled by default and by including this option
on the command line. If the -g option appears
without the -O option, optimization is disabled.

-outdir <dirname> Place all output files in folder <dirname>.

-output
<resultname>

Create an executable named <resultname>.
An appropriate executable extension is
automatically appended. Overrides the mbuild
default executable naming mechanism.

-regsvr (Windows only) Use the regsvr32 program to
register the resulting shared library at the end
of compilation. MATLAB Compiler uses this
option whenever it produces a COM or .NET
wrapper file.

-setup Interactively specify the compiler options file
to use as the default for future invocations of
mbuild by placing it in the user profile folder
(returned by the prefdir command). When
this option is specified, no other command line
input is accepted.

-U<name> Remove any initial definition of the C
preprocessor symbol <name>. (Inverse of the
-D option.)

12-23

mbuild

Option Description

-v Verbose mode. Print the values for important
internal variables after the options file is
processed and all command line arguments
are considered. Prints each compile step and
final link step fully evaluated.

<name>=<value> Supplement or override an options file variable
for variable <name>. This option is processed
after the options file is processed and all
command line arguments are considered. You
may need to use the shell’s quoting syntax to
protect characters such as spaces that have
a meaning in the shell syntax. On Windows
double quotes are used (e.g., COMPFLAGS="opt1
opt2"), and on UNIX single quotes are used
(e.g., CFLAGS='opt1 opt2').

It is common to use this option to supplement
a variable already defined. To do this, refer
to the variable by prepending a $ (e.g.,
COMPFLAGS="$COMPFLAGS opt2" on Windows
or CFLAGS='$CFLAGS opt2' on UNIX).

12-24

mbuild

Caution

On Windows platforms, at either the MATLAB prompt or the DOS
prompt, use double quotes (") when specifying command-line overrides
with mbuild. For example:

mbuild -v COMPFLAGS="$COMPFLAGS -Wall"
LINKFLAGS="$LINKFLAGS /VERBOSE" yprime.c

At the MATLAB command line on UNIX platforms, (") when specifying
command-line overrides with mbuild. Use the backslash (\) escape
character before the dollar sign ($). For example:

mbuild -v CFLAGS="\$CFLAGS -Wall"
LDFLAGS="\$LDFLAGS-w" yprime.c

At the shell command line on UNIX platforms, use single quotes (').
For example:

mbuild -v CFLAGS='$CFLAGS -Wall'
LDFLAGS='$LDFLAGS -w' yprime.c

Note Some of these options (-f, -g, and -v) are available on the mcc
command line and are passed along to mbuild. Others can be passed
along using the -M option to mcc. For details on the -M option, see the
mcc reference page.

12-25

mbuild

Note MBUILD can also create shared libraries from C source code.
If a file with the extension .exports is passed to MBUILD, a shared
library is built. The .exports file must be a text file, with each line
containing either an exported symbol name, or starting with a # or *
in the first column (in which case it is treated as a comment line). If
multiple .exports files are specified, all symbol names in all specified
.exports files are exported.

Examples To set up or change the default C/C++ compiler for use with MATLAB
Compiler, use

mbuild -setup

To compile and link an external C program foo.c against libfoo, use

mbuild foo.c -L. -lfoo (on UNIX)
mbuild foo.c libfoo.lib (on Windows)

This assumes both foo.c and the library generated above are in the
current working folder.

12-26

mcc

Purpose Invoke MATLAB Compiler

Syntax mcc [-options] mfile1 [mfile2 ... mfileN]
[C/C++file1 ... C/C++fileN]

Description mcc is the MATLAB command that invokes MATLAB Compiler. You
can issue the mcc command either from the MATLAB command prompt
(MATLAB mode) or the DOS or UNIX command line (standalone mode).

mcc prepares M-file(s) for deployment outside of the MATLAB
environment, generates wrapper files in C or C++, optionally builds
standalone binary files, and writes any resulting files into the current
folder, by default.

If more than one M-file is specified on the command line, MATLAB
Compiler generates a C or C++ function for each M-file. If C or object
files are specified, they are passed to mbuild along with any generated
C files.

Options -a Add to Archive

Add a file to the CTF archive. Use

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a
options are permitted. MATLAB Compiler looks for these files on the
MATLAB path, so specifying the full path name is optional. These files
are not passed to mbuild, so you can include files such as data files.

If only a folder name is included with the -a option, the entire contents
of that folder are added recursively to the CTF archive. For example:

mcc -m hello.m -a ./testdir

In this example, testdir is a folder in the current working folder. All
files in testdir, as well as all files in subfolders of testdir, are added

12-27

mcc

to the CTF archive, and the folder subtree in testdir is preserved in
the CTF archive.

If a wildcard pattern is included in the file name, only the files in
the folder that match the pattern are added to the CTF archive and
subfolders of the given path are not processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the CTF archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are
added to the CTF archive and subfolders of ./testdir are not processed
recursively.

Note Currently, * is the only supported wildcard.

All files added to the CTF archive using -a (including those that match
a wildcard pattern or appear under a folder specified using -a) that do
not appear on the MATLAB path at the time of compilation will cause
a path entry to be added to the deployed application’s run-time path
so that they will appear on the path when the deployed application
or component is executed.

When files are included, the absolute path for the DLL and header files
is changed. The files are placed in the .\exe_mcr\ folder when the CTF
file is expanded. The file is not placed in the local folder. This folder
gets created from the CTF file the first time the EXE file is executed.
The isdeployed function is provided to help you accommodate this
difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes.
It ensures that the executable looks for the DLL- and H-files in the
exe_mcr\exe folder.

12-28

mcc

Note If the -a flag is used to include custom Java classes, standalone
applications will work without any need to change the classpath
as long as the Java class is not a member of a package. The same
applies for JAR files. However, if the class being added is a member
of a package, the M-code will need to make an appropriate call to
javaaddpath that will update the classpath with the parent folder
of the package.

-b Generate Excel Compatible Formula Function

Generate a Visual Basic file (.bas) containing the Microsoft Excel
Formula Function interface to the COM object generated by MATLAB
Compiler. When imported into the workbook Visual Basic code, this
code allows the MATLAB function to be seen as a cell formula function.
This option requires MATLAB Builder EX.

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the
specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command line
options and corresponding arguments and/or other file names. The file
may contain other -B options. A bundle file can include replacement
parameters for Compiler options that accept names and version
numbers. See “Using Bundle Files” on page 5-9 for a list of the bundle
files included with MATLAB Compiler.

-c Generate C Code Only

When used with a macro option, generate C wrapper code but do not
invoke mbuild, i.e., do not produce a standalone application. This option
is equivalent to the defunct -T codegen placed at the end of the mcc
command line.

12-29

mcc

-C Do Not Embed CTF Archive by Default

Overrides automatically embedding the CTF archive in C/C++ and
main/Winmain shared libraries and standalone binaries by default.
See “Overriding Default CTF Archive Embedding Using the MCR
Component Cache” on page 5-20 for more information.

-d Specified Directory for Output

Place output in a specified folder. Use

-d directory

to direct the output files from the compilation to the folder specified
by the -d option.

-e Suppress MS-DOS Command Window

Suppress appearance of the MS-DOS command window when
generating a standalone application. Use -e in place of the -m option.
This option is available for Windows only. Use with -R option to
generate error logging as such:

mcc -e -R -logfile -R 'filename' -v function_name

or:

mcc -e -R '-logfile,logfilename' -v function_name

This macro is equivalent to the defunct:

-W WinMain -T link:exe

Note This feature requires the application to successfully compile
with a Microsoft Compiler (such as that offered with the free Microsoft
Visual Studio Express).

12-30

mcc

-f Specified Options File

Override the default options file with the specified options file. Use

-f filename

to specify filename as the options file when calling mbuild. This option
allows you to use different ANSI compilers for different invocations of
MATLAB Compiler. This option is a direct pass-through to the mbuild
script.

Note The MathWorks recommends that you use mbuild -setup.

-F Specified Project File

Specify that mcc use settings contained in the specified project file. Use

-F project_name.prj

to specify project_name as the project file name when calling mcc. This
option enables the .prj file, along with all of its associated settings, to
be fed back to mcc. Project files created using either mcc or deploytool
are eligible to use this option. When using -F, no other arguments may
be invoked against mcc.

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated
by MATLAB Compiler. It also causes mbuild to pass appropriate
debugging flags to the system C/C++ compiler. The debug option
enables you to backtrace up to the point where you can identify if the
failure occurred in the initialization of MCR, the function call, or the
termination routine. This option does not allow you to debug your
M-files with a C/C++ debugger.

-G Debug Only

Same as -g.

12-31

mcc

-I Add Directory to Include Path

Add a new folder path to the list of included folders. Each -I option
adds a folder to the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

would set up the search path so that directory1 is searched first
for M-files, followed by directory2. This option is important for
standalone compilation where the MATLAB path is not available.

-l Generate a Function Library

Macro to create a function library. This option generates a library
wrapper function for each M-file on the command line and calls your C
compiler to build a shared library, which exports these functions. You
must supply the name of the library (foo in the following example).

Using

mcc -l foo.m

is equivalent to using:

mcc -W lib:foo -T link:lib foo.m

-m Generate a Standalone Application

Macro to produce a standalone application. This macro is equivalent
to the defunct:

-W main -T link:exe

Use the -e option instead of the -m option to generate a standalone
application while suppressing the appearance of the MS-DOS Command
Window.

12-32

mcc

Note Using the -e option requires the application to successfully
compile with a Microsoft Compiler (such as that offered with the free
Microsoft Visual Studio Express).

-M Direct Pass Through

Define compile-time options. Use

-M string

to pass string directly to the mbuild script. This provides
a useful mechanism for defining compile-time options, e.g.,
-M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M
option is used.

-N Clear Path

Passing -N effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot/toolbox/matlab

• matlabroot/toolbox/local

• matlabroot/toolbox/compiler/deploy

It also retains all subfolders of the above list that appear on the
MATLAB path at compile time. Including -N on the command line
allows you to replace folders from the original path, while retaining the
relative ordering of the included folders. All subfolders of the included
folders that appear on the original path are also included. In addition,
the -N option retains all folders that the user has included on the path
that are not under matlabroot/toolbox.

12-33

mcc

-o Specify Output Name

Specify the name of the final executable (standalone applications only).
Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable,
possibly platform-dependent, extension is added to the specified name
(e.g., .exe for Windows standalone applications).

-p Add Directory to Path

Used in conjunction with required option -N to add specific folders (and
subfolders) under matlabroot/toolbox to the compilation MATLAB
path in an order sensitive way. Use the syntax:

-N -p directory

where directory is the folder to be included. If directory is not an
absolute path, it is assumed to be under the current working folder.
The rules for how these folders are included are

• If a folder is included with -p that is on the original MATLAB path,
the folder and all its subfolders that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB
path, that folder is not included in the compilation. (You can use
-I to add it.)

If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the
folder is added to the head of the path, as it normally would be with -I.

-R Run-Time

Provide MCR run-time options. Use the syntax

-R option

12-34

mcc

to provide one of these run-time options.

Option Description

-logfile
filename

Specify a log file name.

-nodisplay Suppress the MATLAB nodisplay run-time warning.

-nojvm Do not use the Java Virtual Machine (JVM).

-startmsg Customizable user message displayed at MCR
initialization time. See “Displaying MCR
Initialization Start-Up and Completion Messages For
Users” on page 4-33.

-completemsg Customizable user message displayed when MCR
initialization is complete. See “Displaying MCR
Initialization Start-Up and Completion Messages For
Users” on page 4-33.

Note The -R option is available only for standalone applications. To
override MCR options in the other MATLAB Compiler targets, use the
mclInitializeApplication and mclTerminateApplication functions.
For more information on these functions, see “Calling a Shared Library”
on page 7-11.

Caution

When running on Mac, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

-S Create Singleton MCR

Create a singleton MCR when compiling a COM object. Each instance
of the component uses the same MCR. Requires MATLAB Builder NE.

12-35

mcc

-v Verbose

Display the compilation steps, including:

• MATLAB Compiler version number

• The source file names as they are processed

• The names of the generated output files as they are created

• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information
about mbuild.

Note MCRInstaller.exe has obsoleted the need for the function
buildmcr or the creation of MCRInstaller.zip. See “Replacement of
MCRInstaller.zip and BUILDMCR Functionality” on page 1-19 for more
details including complete file paths to all install programs.

-w Warning Messages

Displays warning messages. Use the syntax

-w option[:<msg>]

to control the display of warnings. This table lists the valid syntaxes.

Syntax Description

-w list Generates a table that maps <string>
to warning message for use with enable,
disable, and error. Appendix B, “Error
and Warning Messages”, lists the same
information.

-w enable Enables complete warnings.

12-36

mcc

Syntax Description

-w
disable[:<string>]

Disables specific warning associated
with <string>. Appendix B, “Error
and Warning Messages”, lists the valid
<string> values. Leave off the optional
<string> to apply the disable action to
all warnings.

-w enable[:<string>] Enables specific warning associated
with <string>. Appendix B, “Error
and Warning Messages”, lists the valid
<string> values. Leave off the optional
<string> to apply the enable action to all
warnings.

-w error[:<string>] Treats specific warning associated with
<string> as error. Leave off the optional
<string> to apply the error action to all
warnings.

-W Wrapper Function

Controls the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of M-files
generated by MATLAB Compiler. You provide a list of functions
and MATLAB Compiler generates the wrapper functions and any
appropriate global variable definitions. This table shows the valid
options.

Type Description

main Produces a POSIX shell main() function.

12-37

mcc

Type Description

lib:<string> Creates a C interface and produces an initialization
and termination function for use when compiling this
compiler generated code into a larger application.
This option also produces a header file containing
prototypes for all public functions in all M-files
specified. <string> becomes the base (file) name
for the generated C/C++ and header file. Creates a
.exports file that contains all nonstatic function
names.

cpplib:<string> Creates a C++ interface and produces an initialization
and termination function for use when compiling this
compiler generated code into a larger application.
This option also produces a header file containing
prototypes for all public functions in all M-files
specified. <string> becomes the base (file) name
for the generated C/C++ and header file. Creates a
.exports file that contains all nonstatic function
names.

none Does not produce a wrapper file. The default is none.

-Y License File

Use

-Y license.dat_file

to override the default license.dat file with the specified argument.

-z Specify Path

Specify the path for library and include files. Use

-z path

to specify path to use for the compiler libraries and include files instead
of the path returned by matlabroot.

12-38

mcc

-? Help Message

Display MATLAB Compiler help at the command prompt.

Linux mcc Cache Management Command Options

The Bourne shell front-end interface to MATLAB Compiler uses a cache
file to speed execution. The cache file contains precomputed values
of critical environment variables. The cache is automatically built
whenever the back-end interface is called, providing that the cache
file doesn’t already exist and the -nocache option is not used. Later
executions of mcc will use it unless overridden by -nocache. Special
command-line options are available to manage this cache, but they
can only be executed on Linux in standalone command-line mode (not
through MATLAB). The table summarizes these options.

Linux Command Option Description

-cache Prints the cache if used as the
only argument. Can be used to
rebuild the cache when used with
other arguments in this table.

-rmcache Removes the cache.

-nocache Ignores the cache.

Examples
Make a standalone executable for myfun.m.

mcc -m myfun

Make a standalone executable for myfun.m, but look for myfun.m in
the /files/source folder and put the resulting C files and in the
/files/target folder.

mcc -m -I /files/source -d /files/target myfun

Make the standalone myfun1 from myfun1.m and myfun2.m (using one
mcc call).

12-39

mcc

mcc -m myfun1 myfun2

See Also
deploytool

12-40

mclGetLogFileName

Purpose Retrieves name of log file used by the MCR

Syntax const char* mclGetLogFileName()

Description Use mclGetLogFileName() to retrieve the name of the log file used by
the MCR. Returns a character string representing log file name used
by MCR. For more information, see “Retrieving MCR Attributes” on
page 4-24 in the user guide.

Example printf("Logfile name : %s\n",mclGetLogFileName());

12-41

mclGetMCRUserData

Purpose Retrieve MATLAB data associated with string key of MCR instance
uniquely identified by mcrID

Syntax extern "C"
mxArray *mclGetMCRUserData(

long mcrID,
const char *key

);

Description This external C function retrieves the MATLAB data associated with
the string key of an MCR instance uniquely identified by mcrID.
mclGetMCRUserData returns an empty matrix if no data has been
associated with the specified key. The returned mxArray is a shared
copy of the mxArray stored in the user data table. Dispose of this shared
copy properly by calling mxDestroyArray.

This command is part of the MCR User Data interface API. For
information about this function, as well as complete examples of usage,
see “Improving Data Access Using the MCR User Data Interface” on
page 4-26.

Example mxArray *value = mclGetMCRUserData(mcrID,
"ParallelConfigurationFile");

See Also mclSetCmdLineUserData, mclSetMCRUserData

12-42

mclInitializeApplication

Purpose Sets up application state shared by all (future) MCR instances created
in current process. Called only once per process.

Syntax bool
mclInitializeApplication(const char **options, int count)

Description MATLAB Compiler-generated standalone executables contain
auto-generated code to call this function; users of shared libraries must
call this function manually. The function takes an array of strings
(possibly of zero length) and a count containing the size of the string
array. The string array may contain the following MATLAB command
line switches, which have the same meaning as they do when used in
MATLAB. :

• -appendlogfile

• -Automation

• -beginfile

• -debug

• -defer

• -display

• -Embedding

• -endfile

• -fork

• -java

• -jdb

• -logfile

• -minimize

• -MLAutomation

• -noaccel

12-43

mclInitializeApplication

• -nodisplay

• -noFigureWindows

• -nojit

• -noshelldde

• -nosplash

• -r

• -Regserver

• -shelldde

• -student

• -Unregserver

• -useJavaFigures

• -mwvisual

• -xrm

Caution

mclInitializeApplication must be called once only per process.
Calling mclInitializeApplication more than once may cause your
application to exhibit unpredictable or undesirable behavior.

Caution

When running on Mac, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

Example To start all MCRs in a given process with the -nodisplay option, for
example, use the following code:

12-44

mclInitializeApplication

char *args[] = { "-nodisplay" };
bool success = mclInitializeApplication(args, 1);

See Also “Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication” on
page 7-11

mclTerminateApplication

12-45

mclIsJVMEnabled

Purpose Determines if MCR was launched with instance of a Java Virtual
Machine (JVM)

Syntax bool mclIsJVMEnabled()

Description Use mclIsJVMEnabled() to determine if the MCR was launched
with an instance of a Java Virtual Machine (JVM). Returns true if
MCR is launched with a JVM instance, else returns false. For more
information, see “Retrieving MCR Attributes” on page 4-24 in the user
guide.

Example printf("JVM initialized : %d\n", mclIsJVMEnabled());

12-46

mclIsMCRInitialized

Purpose Determines if MCR has been properly initialized

Syntax bool mclIsMCRInitialized()

Description Use mclIsMCRInitialized() to determine whether or not the MCR has
been properly initialized. Returns true if MCR is already initialized;
else returns false. For more information, see “Retrieving MCR
Attributes” on page 4-24 in the user guide.

Example printf("MCR initialized : %d\n", mclIsMCRInitialized());

12-47

mclIsNoDisplaySet

Purpose Determines if -nodisplay mode is enabled.

Syntax bool mclIsNoDisplaySet()

Description Use mclIsNoDisplaySet() to determine if -nodisplaymode is enabled.
Returns true if -nodisplay is enabled, else returns false. For more
information, see “Retrieving MCR Attributes” on page 4-24 in the user
guide.

Note Always returns false on Windows systems since the -nodisplay
option is not supported on Windows systems.

Example printf("nodisplay set : %d\n",mclIsNoDisplaySet());

12-48

mclKillAllFigures

Purpose Finds and deletes open figures

Syntax

Description This function uses the same internal algorithm to locate open figures as
mclWaitForFiguresToDie.

Typically you use mclKillAllFigures when you need to kill figures
that are being displayed as the result of a programming problem, such
as an endless loop. Alternately, you might use it to ensure all figures
are closed before the execution of another application.

Examples Following are three alternate ways of using mclKillAllFigures
to terminate three figures displayed by shared library calls to
showknot(),showpeak(), and showbottle().

showknot();
showpeak();
showbottle();
mclKillAllFigures((HMCRINSTANCE)0);

showknot();
showpeak();
showbottle();
mclKillAllFigures(0);

showknot();
showpeak();
showbottle();
mclKillAllFigures(NULL);

See Also mclWaitForFiguresToDie

“Terminating Figures by Force with the mclKillAllFigures Method”
on page 5-31

12-49

mclSetCmdLineUserData

Purpose Associate MATLAB data value with string key of MCR instance
uniquely identified by mcrID

Syntax extern "C"
size_t mclSetCmdLineUserData(

long mcrID,
int argc,
const char **argv

);

Description This external C function examines the arguments on the command
line for the switch -mcruserdata and calls mclSetMCRUserData on the
argument of any such switches that it finds. It then returns the new
size of argv (the new value for argc). MCR user data is specified on
the command line using the -mcruserdata switch, as in the following
example:

% myapp -mcruserdata
"ParallelConfigurationFile:/usr/userdir/config.mat"

Users may pass MCR user data to an application on the command
line with the -mcruserdata switch. The switch argument syntax is
key:value, where both key and value are strings. The key string may
not contain any colons, but the value string may contain them. The
string is split into key and value at the first colon. Multiple switches
may appear on a command line.

Caution

Be aware that all standalone applications attempt to parse the
command line. Use the -mcruserdata switch with great care.

12-50

mclSetCmdLineUserData

Note The generated main function for a C/C++ application changes to
call mclSetCmdLineUserData after initializing the MCR. Generated
code for a software component or shared library does not change. It is
the user’s responsibility to call mclSetMCRUserData after calling the
library initialization function.

Note A compiled application should set mcruserdata
ParallelConfigurationFile before calling any Parallel
Computing Toolbox code. Once this code has been called, setting
ParallelConfigurationFile to point to a different file has no effect.

This command is part of the MCR User Data interface API. For
information about this function, as well as complete examples of usage,
see “Improving Data Access Using the MCR User Data Interface” on
page 4-26.

Examples Call using this basic structure:

int run_main(int argc, const char **argv)
{

// Other run_main code here ...

// Get -mcruserdata switches from the command line
size_t dataCount =

mclSetCmdLineUserData(_mcr_inst, argc, argv);

_retval = mclMain(_mcr_inst, argc, argv, "tctf", 0);

// Other run_main code here ...
}

Use the following code sample as a reference:

12-51

mclSetCmdLineUserData

int run_main(int argc, const char **argv)
{

int _retval;
/* Generate and populate the path_to_component. */
char path_to_component[(PATH_MAX*2)+1];
separatePathName(argv[0],

path_to_component, (PATH_MAX*2)+1);
__MCC_tctf_component_data.path_to_component =

path_to_component;
if (!tctfInitialize()) {

return -1;
}

size_t dataCount =
mclSetCmdLineUserData(_mcr_inst, argc, argv);

_retval = mclMain(_mcr_inst, argc, argv, "tctf", 0);
if (_retval == 0 /* no error */)

mclWaitForFiguresToDie(NULL);
tctfTerminate();
mclTerminateApplication();
return _retval;

}

12-52

mclSetMCRUserData

Purpose Associate MATLAB data value with string key of MCR instance
uniquely identified by mcrID

Syntax extern "C"
bool mclSetMCRUserData(

long mcrID, // Integer MCR instance identifier
const char *key, // Store user data under this key
mxArray *value // User data value

);

Description This external C function associates a MATLAB data value with
the string key of the MCR instance uniquely identified by mcrID.
mclSetMCRUserData registers the mxArray value under the string key,
which may later be used by mclGetMCRInstanceData to retrieve the
data. mclSetMCRUserData is defined in the MCLMCR module and is
only available to wrapper code in deployed applications. This function
makes a shared copy of the input data and does not assume ownership of
the mxArray value. You must call mxDestroyArray on value eventually
in your application or memory leak problems may occur.

This command is part of the MCR User Data interface API. For
information about this function, as well as complete examples of usage,
see “Improving Data Access Using the MCR User Data Interface” on
page 4-26.

Note A compiled application should set mcruserdata
ParallelConfigurationFile before calling any Parallel
Computing Toolbox code. Once this code has been called, setting
ParallelConfigurationFile to point to a different file has no effect.

Example mxArray *value = mxCreateString("/usr/userdir/config.mat");
if (!mclSetMCRUserData(mcrID, "ParallelConfigurationFile",

"/usr/userdir/config.mat"))
{

fprintf(stderr, "Could not set PCTConfigFile MCR

12-53

mclSetMCRUserData

user data. \n");
return -3;

}

See Also mclSetCmdLineUserData, mclGetMCRUserData

12-54

mclTerminateApplication

Purpose Closes down all MCR-internal application state. Called only once per
process.

Syntax bool mclTerminateApplication(void)

Description Call this function once at the end of your program to close down all
MCR-internal application state. After you have called this function, you
cannot call any further MATLAB Compiler-generated functions or any
functions in any MATLAB library.

Caution

mclTerminateApplication must be called once only per process.
Calling mclTerminateApplication more than once may cause your
application to exhibit unpredictable or undesirable behavior.

Example At the start of your program, call mclInitializeApplication to ensure
your library was properly initialized:

mclInitializeApplication(NULL,0);
if (!libmatrixInitialize()){
fprintf(stderr,"could not initialize the library
properly\n");
return -1;
}

At your program’s exit point, call mclTerminateApplication to
properly shut the application down:

mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
mclTerminateApplication();
return 0;

12-55

mclTerminateApplication

See Also “Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication” on
page 7-11

mclInitializeApplication

12-56

mclWaitForFiguresToDie

Purpose Enables deployed applications to process Handle Graphics events,
enabling figure windows to remain displayed.

Syntax void mclWaitForFiguresToDie(HMCRINSTANCE inst)

Description Calling void mclWaitForFiguresToDie(HMCRINSTANCE inst) enables
the deployed application to process Handle Graphics events. If this
function is not called, any figure windows initially displayed by the
application will briefly appear and then the application will exit.

This function returns only when the last figure window is manually
closed — therefore, this function should be called after the library
launches at least one figure window.

This function may be called multiple times. If the input argument, an
MCR instance, is null, the function monitors the figures of the current
MCR.

This function can only be called after <library>Initialize has been
called and before <library>Terminate has been called.

Note WaitForFiguresToDie will block the calling program only for
MATLAB figures. It will not block any Java GUIs, ActiveX controls,
and other non-MATLAB GUIs unless they are embedded in a MATLAB
figure window.

Example int run_main(int argc, const char** argv)
{

int some_variable = 0;

if (argc > 1)
test_to_run = atoi(argv[1]);

/* Initialize application */
if(!mclInitializeApplication(NULL,0))
{

fprintf(stderr, "Could not initialize the

12-57

mclWaitForFiguresToDie

application.\n");
return(-1);

}
if (test_to_run == 1 || test_to_run == 0)
{

/* Initialize ax1ks library */
if (!libax1ksInitialize())
{

fprintf(stderr,"Could not initialize
the ax1ks library.\n");

return (-2);
}

}
if (test_to_run == 2 || test_to_run == 0)
{

/* Initialize simple library */
if (!libsimpleInitialize())
{

fprintf(stderr,"Could not initialize
the simple library.\n");

return (-3);
}

}
/* your code here
/* your code here
/* your code here
/* your code here
/*
/* Block on open figures */
mclWaitForFiguresToDie(NULL);
/* Terminate libraries */
if (test_to_run == 1 || test_to_run == 0)

libax1ksTerminate();
if (test_to_run == 2 || test_to_run == 0)

libsimpleTerminate();
/* Terminate application */
mclTerminateApplication();

12-58

mclWaitForFiguresToDie

return(0);
}

See Also mclKillAllFigures

“Blocking Execution of a Console Application with the
mclWaitForFiguresToDie Method” on page 5-30

12-59

mcrinstaller

Purpose Displays version and location information for MCR installer(s)
corresponding to current platform.

Syntax [INSTALLER_PATH, MAJOR, MINOR, PLATFORM,
LIST] = mcrinstaller;

Description Displays information about available MCR installers using the
format: [INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST] =
mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current
platform.

• MAJOR is the major version number of the installer.

• MINOR is the minor version number of the installer.

• PLATFORM is the name of the current platform (returned by
COMPUTER(arch)).

• LIST is a cell array of strings containing the full paths to MCR
installers for other platforms. This list is non-empty only in a
multi-platform MATLAB installation.

Note You must distribute the MATLAB Compiler Runtime library
to your end users to enable them to run applications developed with
MATLAB Compiler. Prebuilt MCR installers for all licensed platforms
ship with MATLAB Compiler.

See the Chapter 10, “Reference Information” chapter for more
information about the MCR installer.

Example mcrinstaller

The WIN32 MCR Installer, version 7.8, is:

12-60

mcrinstaller

X:\user\buildversion\matlab\toolbox\compiler\
deploy\win32\MCRInstaller.exe

MCR installers for other platforms are located in:
X:\user\buildversion\matlab\toolbox\compiler\

deploy\<ARCH>
<ARCH> is the value of COMPUTER('arch') on the

target machine.

For more information, read your local MCR Installer help.
Or see the online documentation at The MathWorks' web site.

ans =
X:\user\buildversion\matlab\toolbox\compiler\

deploy\win32\MCRInstaller.exe

12-61

mcrversion

Purpose Determine version of installed MATLAB Compiler Runtime (MCR)

Syntax [major, minor] = mcrversion;

Description The MCR version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable:
[major, minor] = mcrversion; Major and minor are returned as
integers.

If the version number ever increases to three or more digits, call
mcrversion with more outputs, as follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Example mcrversion
ans =

7

12-62

setmcruserdata

Purpose Associate MATLAB data value with string key

Syntax function setmcruserdata(key, value)

Description The function setmcruserdata(key, value) command is part of the
MCR User Data interface API. For information about this function, as
well as complete examples of usage, see “Improving Data Access Using
the MCR User Data Interface” on page 4-26.

Examples setmcruserdata(`ParallelConfigurationFile','config.mat')

mxArray *value = mxCreateString("/usr/userdir/config.mat");
if (!SetMCRUserData(mcrID, "ParallelConfigurationFile",

"/usr/userdir/config.mat"))
{

fprintf(stderr, "Could not set PCTConfigFile MCR user
data.\n");

return -3;
}

See Also getmcruserdata

12-63

setmcruserdata

12-64

A

MATLAB Compiler Quick
Reference

• “Common Uses of MATLAB® Compiler ” on page A-2

• “mcc” on page A-4

A MATLAB® Compiler™ Quick Reference

Common Uses of MATLAB Compiler

In this section...

“Create a Standalone Application” on page A-2

“Create a Library” on page A-2

Create a Standalone Application

Example 1
To create a standalone application from mymfile.m, use

mcc -m mymfile

Example 2
To create a standalone application from mymfile.m, look for mymfile.m in the
folder /files/source, and put the resulting C files and in /files/target,
use

mcc -m -I /files/source -d /files/target mymfile

Example 3
To create a standalone application mymfile1 from mymfile1.m and
mymfile2.m using a single mcc call, use

mcc -m mymfile1 mymfile2

Create a Library

Example 1
To create a C shared library from foo.m, use

mcc -l foo.m

A-2

Common Uses of MATLAB® Compiler™

Example 2
To create a C shared library called library_one from foo1.m and foo2.m, use

mcc -W lib:library_one -T link:lib foo1 foo2

Note You can add the -g option to any of these for debugging purposes.

A-3

A MATLAB® Compiler™ Quick Reference

mcc
Bold entries in the Comment/Options column indicate default values.

Option Description Comment/Options

-a filename Add filename to the CTF
archive.

None

-b Generate Excel compatible
formula function.

Requires MATLAB Builder EX

-B
filename[:arg[,arg]]

Replace -B filename on the
mcc command line with the
contents of filename.

The file should contain only mcc
command-line options. These are
MathWorks included options files:

• -B csharedlib:foo — C shared
library

• -B cpplib:foo— C++ library

-c Generate C wrapper code. Equivalent to
-T codegen

-C Directs mcc to not embed
the CTF archive in C/C++
and main/Winmain shared
libraries and standalone
binaries by default.

See “Overriding Default CTF Archive
Embedding Using the MCR Component
Cache” on page 5-20 for more
information.

-d directory Place output in specified
folder.

None

A-4

mcc

Option Description Comment/Options

-e Suppresses appearance of
the MS-DOS Command
Window when generating a
standalone application.

Use -e in place of the -m option.
Available for Windows only. Use
with -R option to generate error
logging. Equivalent to -W WinMain -T
link:exe

Note This feature requires the
application to successfully compile with
a Microsoft Compiler (such as that
offered with the free Microsoft Visual
Studio Express).

-f filename Use the specified options
file, filename, when calling
mbuild.

mbuild -setup is recommended.

-F project_name.prj Use the specified project file
as input to mcc.

When using -F, no other arguments can
be invoked against mcc.

-g Generate debugging
information.

None

-G Same as -g None

-I directory Add folder to search path for
M-files.

MATLAB path is automatically
included when running from MATLAB,
but not when running from aDOS/UNIX
shell.

-l Macro to create a function
library.

Equivalent to
-W lib -T link:lib

-m Macro to generate a C
standalone application.

Equivalent to
-W main -T link:exe

-M string Pass string to mbuild. Use to define compile-time options.

-N Clear the path of all but
a minimal, required set of
folders.

None

A-5

A MATLAB® Compiler™ Quick Reference

Option Description Comment/Options

-o outputfile Specify name of final output
file.

Adds appropriate extension

-p directory Add directory to
compilation path in an
order-sensitive context.

Requires -N option

-R option Specify run-time options for
MCR.

option =
-nojvm
-nodisplay

-logfile
-startmsg
-completemsg filename

-S Create Singleton MCR. Requires MATLAB Builder NE

-v Verbose; display compilation
steps.

None

-w option Display warning messages. option = list
level

level:string
where level = disable

enable
error

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string>

none
com:compname,clname,version

-Y licensefile Use licensefile when
checking out a MATLAB
Compiler license.

None

-z path Specify path for library and
include files.

None

-? Display help message. None

A-6

B

Error and Warning
Messages

• “About Error and Warning Messages” on page B-2

• “Compile-Time Errors” on page B-3

• “Warning Messages” on page B-6

• “depfun Errors” on page B-9

B Error and Warning Messages

About Error and Warning Messages
This appendix lists and describes error messages and warnings generated
by MATLAB Compiler. Compile-time messages are generated during the
compile or link phase. It is useful to note that most of these compile-time
error messages should not occur if the MATLAB software can successfully
execute the corresponding M-file.

Use this reference to:

• Confirm that an error has been reported

• Determine possible causes for an error

• Determine possible ways to correct an error

When using MATLAB Compiler, if you receive an internal error message,
record the specific message and report it to Technical Support at
http://www.mathworks.com/contact_TS.html.

B-2

http://www.mathworks.com/contact_TS.html

Compile-Time Errors

Compile-Time Errors
Error: An error occurred while shelling out to mex/mbuild (error
code = errorno). Unable to build (specify the -v option for more
information). MATLAB Compiler reports this error if mbuild or mex
generates an error.

Error: An error occurred writing to file "filename": reason. The file
can not be written. The reason is provided by the operating system. For
example, you may not have sufficient disk space available to write the file.

Error: Cannot write file "filename" because MCC has already created
a file with that name, or a file with that name was specified as a
command line argument. MATLAB Compiler has been instructed to
generate two files with the same name. For example:

mcc -W lib:liba liba -t % Incorrect

Error: Could not check out a Compiler license. No additional MATLAB
Compiler licenses are available for your workgroup.

Error: Could not find license file "filename". (Windows only) The
license.dat file can not be found in matlabroot\bin.

Error: Initializing preferences required to run the application. The
.ctf file and the corresponding target (standalone application or shared
library) created using MATLAB Compiler do not match. Ensure that the .ctf
file and the target file are created as output from the same mcc command.
Verify the time stamp of these files to ensure they were created at the same
time. Never combine the .ctf file and the target application created during
execution of different mcc commands.

Error: File: "filename" not found. A specified file can not be found on the
path. Verify that the file exists and that the path includes the file’s location.
You can use the -I option to add a folder to the search path.

Error: File: "filename" is a script M-file and cannot be compiled with
the current Compiler. MATLAB Compiler cannot compile script M-files. To
learn how to convert script M-files to function M-files, see “Converting Script
M-Files to Function M-Files” on page 5-25.

B-3

B Error and Warning Messages

Error: File: filename Line: # Column: # A variable cannot be made
storageclass1 after being used as a storageclass2. You cannot change
a variable’s storage class (global/local/persistent). Even though MATLAB
allows this type of change in scope, MATLAB Compiler does not.

Error: Found illegal whitespace character in command line option:
"string". The strings on the left and right side of the space should
be separate arguments to MCC. For example:

mcc('-m', '-v', 'hello')% Correct
mcc('-m -v', 'hello') % Incorrect

Error: Improper usage of option -optionname. Type "mcc -?" for
usage information. You have incorrectly used a MATLAB Compiler option.
For more information about MATLAB Compiler options, see Chapter 11,
“Function Reference”, or type mcc -? at the command prompt.

Error: libraryname library not found. MATLAB has been installed
incorrectly.

Error: No source files were specified (-? for help). You must provide
MATLAB Compiler with the name of the source file(s) to compile.

Error: "optionname" is not a valid -option option argument. You must
use an argument that corresponds to the option. For example:

mcc -W main ... % Correct
mcc -W mex ... % Incorrect

Error: Out of memory. Typically, this message occurs because MATLAB
Compiler requests a larger segment of memory from the operating system
than is currently available. Adding additional memory to your system can
alleviate this problem.

Error: Previous warning treated as error. When you use the -w error
option, this error appears immediately after a warning message.

Error: The argument after the -option option must contain a colon.
The format for this argument requires a colon. For more information, see
Chapter 11, “Function Reference”, or type mcc -? at the command prompt.

B-4

Compile-Time Errors

Error: The environment variable MATLAB must be set to the MATLAB
root directory. On UNIX, the MATLAB and LM_LICENSE_FILE variables must
be set. The mcc shell script does this automatically when it is called the first
time.

Error: The license manager failed to initialize (error code is
errornumber). You do not have a valid MATLAB Compiler license or no
additional MATLAB Compiler licenses are available.

Error: The option -option is invalid in modename mode (specify -?
for help). The specified option is not available.

Error: The specified file "filename" cannot be read. There is a problem
with your specified file. For example, the file is not readable because there
is no read permission.

Error: The -optionname option requires an argument (e.g.
"proper_example_usage"). You have incorrectly used a MATLAB
Compiler option. For more information about MATLAB Compiler options, see
Chapter 11, “Function Reference”, or type mcc -? at the command prompt.

Error: -x is no longer supported. MATLAB Compiler no longer generates
MEX-files because there is no longer any performance advantage to doing so.
The MATLAB JIT Accelerator makes compilation for speed obsolete.

Error: Unable to open file "filename":<string>. There is a problem with
your specified file. For example, there is no write permission to the output
folder, or the disk is full.

Error: Unable to set license linger interval (error code is
errornumber). A license manager failure has occurred. Contact Technical
Support with the full text of the error message.

Error: Unknown warning enable/disable string: warningstring. -w
enable:, -w disable:, and -w error: require you to use one of the warning
string identifiers listed in “Warning Messages” on page B-6.

Error: Unrecognized option: -option. The option is not a valid option.
See Chapter 11, “Function Reference”, for a complete list of valid options for
MATLAB Compiler, or type mcc -? at the command prompt.

B-5

http://www.mathworks.com/support/
http://www.mathworks.com/support/

B Error and Warning Messages

Warning Messages
This section lists the warning messages that MATLAB Compiler can generate.
Using the -w option for mcc, you can control which messages are displayed.
Each warning message contains a description and the warning message
identifier string (in parentheses) that you can enable or disable with the -w
option. For example, to produce an error message if you are using a demo
MATLAB Compiler license to create your standalone application, you can use:

mcc -w error:demo_license -mvg hello

To enable all warnings except those generated by the save command, use:

mcc -w enable -w disable:demo_license ...

To display a list of all the warning message identifier strings, use:

mcc -w list -m mfilename

For additional information about the -w option, see Chapter 11, “Function
Reference”.

Warning: File: filename Line: # Column: # The #function pragma
expects a list of function names. (pragma_function_missing_names) This
pragma informs MATLAB Compiler that the specified function(s) provided
in the list of function names will be called through an feval call. This will
automatically compile the selected functions.

Warning: M-file "filename" was specified on the command line
with full path of "pathname", but was found on the search path
in directory "directoryname" first. (specified_file_mismatch) MATLAB
Compiler detected an inconsistency between the location of the M-file as given
on the command line and in the search path. MATLAB Compiler uses the
location in the search path. This warning occurs when you specify a full path
name on the mcc command line and a file with the same base name (file name)
is found earlier on the search path. This warning is issued in the following
example if the file afile.m exists in both dir1 and dir2:

mcc -m -I /dir1 /dir2/afile.m

B-6

Warning Messages

Warning: The file filename was repeated on MATLAB Compiler
command line. (repeated_file) This warning occurs when the same file name
appears more than once on the compiler command line. For example:

mcc -m sample.m sample.m % Will generate the warning

Warning: The name of a shared library should begin with the letters
"lib". "libraryname" doesn’t. (missing_lib_sentinel) This warning is
generated if the name of the specified library does not begin with the letters
“lib”. This warning is specific to UNIX and does not occur on the Windows
operating system. For example:

mcc -t -W lib:liba -T link:lib a0 a1 % No warning
mcc -t -W lib:a -T link:lib a0 a1 % Will generate a warning

Warning: All warnings are disabled. (all_warnings) This warning
displays all warnings generated by MATLAB Compiler. This warning is
disabled.

Warning: A line has num1 characters, violating the maximum page
width (num2). (max_page_width_violation) This warning is generated if
there are lines that exceed the maximum page width, num2. This warning
is disabled.

Warning: The option -optionname is ignored in modename mode
(specify -? for help). (switch_ignored) This warning is generated if an
option is specified on the mcc command line that is not meaningful in the
specified mode. This warning is enabled.

Warning: Unrecognized Compiler pragma "pragmaname".
(unrecognized_pragma) This warning is generated if you use an unrecognized
pragma. This warning is enabled.

Warning: "functionname1" is a MEX- or P-file being referenced
from "functionname2". (mex_or_p_file) This warning is generated if
functionname2 calls functionname1, which is a MEX- or P-file. This warning
is enabled.

B-7

B Error and Warning Messages

Note A link error is produced if a call to this function is made from standalone
code.

DEMO Compiler license. The generated application will expire 30
days from today, on date. (demo_license) This warning displays the date
that the deployed application will expire. This warning is enabled.

B-8

depfun Errors

depfun Errors

In this section...

“About depfun Errors” on page B-9

“MCR/Dispatcher Errors” on page B-9

“XML Parser Errors” on page B-9

“depfun-Produced Errors” on page B-10

About depfun Errors
MATLAB Compiler uses a dependency analysis (depfun) to determine the list
of necessary files to include in the CTF package. If this analysis encounters a
problem, depfun displays an error.

These error messages take the form

depfun Error: <message>

There are three causes of these messages:

• MCR/Dispatcher errors

• XML parser errors

• depfun-produced errors

MCR/Dispatcher Errors
These errors originate directly from the MCR/Dispatcher. If one of
these error occurs, report it to Technical Support at The MathWorks at
http://www.mathworks.com/contact_TS.html.

XML Parser Errors
These errors appear as

depfun Error: XML error: <message>

B-9

http://www.mathworks.com/contact_TS.html

B Error and Warning Messages

Where <message> is a message returned by the XML parser. If this
error occurs, report it to Technical Support at The MathWorks at
http://www.mathworks.com/contact_TS.html.

depfun-Produced Errors
These errors originate directly from depfun.

depfun Error: Internal error. This error occurs if an internal error is
encountered that is unexpected, for example, a memory allocation error
or a system error of some kind. This error is never user generated. If
this error occurs, report it to Technical Support at The MathWorks at
http://www.mathworks.com/contact_TS.html.

depfun Error: Unexpected error thrown. This error is similar to the
previous one. If this error occurs, report it to Technical Support at The
MathWorks at http://www.mathworks.com/contact_TS.html.

depfun Error: Invalid file name: <filename>. An invalid file name was
passed to depfun.

depfun Error: Invalid directory: <dirname>. An invalid folder was
passed to depfun.

B-10

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

C

C++ Utility Library
Reference

• “Primitive Types” on page C-2

• “Utility Classes” on page C-3

• “mwString Class” on page C-4

• “mwException Class” on page C-20

• “mwException Class Functions” on page C-21

• “mwArray Class” on page C-29

• “mwArray Class Functions” on page C-33

C C++ Utility Library Reference

Primitive Types
The mwArray API supports all primitive types that can be stored in a MATLAB
array. This table lists all the types.

Type Description mxClassID

mxChar Character type mxCHAR_CLASS

mxLogical Logical or Boolean type mxLOGICAL_CLASS

mxDouble Double-precision
floating-point type

mxDOUBLE_CLASS

mxSingle Single-precision
floating-point type

mxSINGLE_CLASS

mxInt8 1-byte signed integer mxINT8_CLASS

mxUint8 1-byte unsigned integer mxUINT8_CLASS

mxInt16 2-byte singed integer mxINT16_CLASS

mxUint16 2-byte unsigned integer mxUINT16_CLASS

mxInt32 4-byte signed integer mxINT32_CLASS

mxUint32 4-byte unsigned integer mxUINT32_CLASS

mxInt64 8-byte signed integer mxINT64_CLASS

mxUint64 8-byte unsigned integer mxUINT64_CLASS

C-2

Utility Classes

Utility Classes
The following are C++ utility classes:

• “mwString Class” on page C-4

• “mwException Class” on page C-20

• “mwArray Class” on page C-29

C-3

C C++ Utility Library Reference

mwString Class

In this section...

“About mwString” on page C-4

“Constructors” on page C-4

“Methods” on page C-4

“Operators” on page C-4

About mwString
The mwString class is a simple string class used by the mwArray API to pass
string data as output from certain methods.

Constructors

• mwString()

• mwString(const char* str)

• mwString(const mwString& str)

Methods

• int Length() const

Operators

• operator const char* () const

• mwString& operator=(const mwString& str)

• mwString& operator=(const char* str)

• bool operator==(const mwString& str) const

• bool operator!=(const mwString& str) const

• bool operator<(const mwString& str) const

• bool operator<=(const mwString& str) const

C-4

mwString Class

• bool operator>(const mwString& str) const

• bool operator>=(const mwString& str) const

• friend std::ostream& operator<<(std::ostream& os, const
mwString& str)

C-5

mwString()

Purpose Construct empty string

C++
Syntax

#include "mclcppclass.h"
mwString str;

Arguments None

Return
Value

None

Description Use this constructor to create an empty string.

C-6

mwString(const char* str)

Purpose Construct new string and initialize strings data with supplied char
buffer

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");

Arguments str
NULL-terminated char buffer to initialize the string.

Return
Value

None

Description Use this constructor to create a string from a NULL-terminated char
buffer.

C-7

mwString(const mwString& str)

Purpose Copy constructor for mwString

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString new_str(str); // new_str contains a copy of the

// characters in str.

Arguments str
mwString to be copied.

Return
Value

None

Description Use this constructor to create an mwString that is a copy of an existing
one. Constructs a new string and initializes its data with the supplied
mwString.

C-8

int Length() const

Purpose Return number of characters in string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
int len = str.Length(); // len should be 16.

Arguments None

Return
Value

The number of characters in the string.

Description Use this method to get the length of an mwString. The value returned
does not include the terminating NULL character.

C-9

operator const char* () const

Purpose Return pointer to internal buffer of string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
const char* pstr = (const char*)str;

Arguments None

Return
Value

A pointer to the internal buffer of the string.

Description Use this operator to get direct read-only access to the string’s data
buffer.

C-10

mwString& operator=(const mwString& str)

Purpose mwString assignment operator

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString new_str = str; // new_str contains a copy of

// the data in str.

Arguments str
String to make a copy of.

Return
Value

A reference to the invoking mwString object.

Description Use this operator to copy the contents of one string into another.

C-11

mwString& operator=(const char* str)

Purpose mwString assignment operator

C++
Syntax

#include "mclcppclass.h"
const char* pstr = "This is a string";
mwString str = pstr; // str contains copy of data in pstr.

Arguments str
char buffer to make copy of.

Return
Value

A reference to the invoking mwString object.

Description Use this operator to copy the contents of a NULL-terminated buffer
into an mwString.

C-12

bool operator==(const mwString& str) const

Purpose Test two mwStrings for equality

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str == str2);// ret should have value of false.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for equality.

C-13

bool operator!=(const mwString& str) const

Purpose Test two mwStrings for inequality

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str != str2); // ret should have value of

// true.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for inequality.

C-14

bool operator<(const mwString& str) const

Purpose Compare input string with this string and return true if this string is
lexicographically less than input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str < str2); // ret should have a value

// of true.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

C-15

bool operator<=(const mwString& str) const

Purpose Compare input string with this string and return true if this string is
lexicographically less than or equal to input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str <= str2); // ret should have value

// of true.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

C-16

bool operator>(const mwString& str) const

Purpose Compare input string with this string and return true if this string is
lexicographically greater than input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str > str2); // ret should have value

// of false.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

C-17

bool operator>=(const mwString& str) const

Purpose Compare input string with this string and return true if this string is
lexicographically greater than or equal to input string

C++
Syntax

#include "mclcppclass.h"
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str >= str2);//ret should have value of false.

Arguments str
String to compare.

Return
Value

The result of the comparison.

Description Use this operator to test two strings for order.

C-18

friend std::ostream& operator<<(std::ostream& os,
const mwString& str)

Purpose Copy contents of input string to specified ostream

C++
Syntax

#include "mclcppclass.h"
#include <ostream>
mwString str("This is a string");
std::cout << str << std::endl; //should print "This is a

//string" to standard out.

Arguments os
ostream to copy string to.

str
String to copy.

Return
Value

The input ostream.

Description Use this operator to print the contents of an mwString to an ostream.

C-19

C C++ Utility Library Reference

mwException Class

In this section...

“About mwException” on page C-20

“Constructors” on page C-20

“Methods” on page C-20

“Operators” on page C-20

About mwException
The mwException class is the basic exception type used by the mwArray
API and the C++ interface functions. All errors created during calls to the
mwArray API and to MATLAB Compiler generated C++ interface functions
are thrown as mwExceptions.

Constructors

• mwException()

• mwException(const char* msg)

• mwException(const mwException& e)

• mwException(const std::exception& e)

Methods

• const char *what() const throw()

Operators

• mwException& operator=(const mwException& e)

• mwException& operator=(const std::exception& e)

C-20

mwException Class Functions

mwException Class Functions
The functions on the following pages are in the mwException class.

C-21

mwException()

Purpose Construct new mwException with default error message

C++
Syntax

#include "mclcppclass.h"
throw mwException();

Arguments None

Return
Value

None

Description Use this constructor to create an mwException without specifying an
error message.

C-22

mwException(const char* msg)

Purpose Construct new mwException with specified error message

C++
Syntax

#include "mclcppclass.h"
try
{

throw mwException("This is an error");
}
catch (const mwException& e)
{

std::cout << e.what() << std::endl // Displays "This
// is an error" to
// standard out.

}

Arguments msg
Error message.

Return
Value

None

Description Use this constructor to create an mwException with a specified error
message.

C-23

mwException(const mwException& e)

Purpose Copy constructor for mwException class

C++
Syntax

#include "mclcppclass.h"
try
{

throw mwException("This is an error");
}
catch (const mwException& e)
{

throw mwException(e); // Rethrows same error.
}

Arguments e
mwException to create copy of.

Return
Value

None

Description Use this constructor to create a copy of an mwException. The copy will
have the same error message as the original.

C-24

mwException(const std::exception& e)

Purpose Create new mwException from existing std::exception

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const std::exception& e)
{

throw mwException(e); // Rethrows same error.
}

Arguments e
std::exception to create copy of.

Return
Value

None

Description Use this constructor to create a new mwException and initialize the
error message with the error message from the given std::exception.

C-25

const char *what() const throw()

Purpose Return error message contained in this exception

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const std::exception& e)
{

std::cout << e.what() << std::endl; // Displays error
// message to
// standard out.

}

Arguments None

Return
Value

A pointer to a NULL-terminated character buffer containing the error
message.

Description Use this method to retrieve the error message from an mwException.

C-26

mwException& operator=(const mwException& e)

Purpose Assignment operator for mwException class

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const mwException& e)
{

mwException e2 = e;
throw e2;

}

Arguments e
mwException to create copy of.

Return
Value

A reference to the invoking mwException.

Description Use this operator to create a copy of an mwException. The copy will
have the same error message as the original.

C-27

mwException& operator=(const std::exception& e)

Purpose Assignment operator for mwException class

C++
Syntax

#include "mclcppclass.h"
try
{

...
}
catch (const std::exception& e)
{

mwException e2 = e;
throw e2;

}

Arguments e
std::exception to initialize copy with.

Return
Value

A reference to the invoking mwException.

Description Use this operator to create a copy of an std::exception. The copy will
have the same error message as the original.

C-28

mwArray Class

mwArray Class

In this section...

“About mwArray” on page C-29

“Constructors” on page C-29

“Methods” on page C-30

“Operators” on page C-31

“Static Methods” on page C-32

About mwArray
Use the mwArray class to pass input/output arguments to MATLAB Compiler
generated C++ interface functions. This class consists of a thin wrapper
around a MATLAB array. As explained in further detail in the MATLAB
documentation, all data in MATLAB is represented by matrices (in other
words, even a simple data structure should be declared as a 1-by-1 matrix).
The mwArray class provides the necessary constructors, methods, and
operators for array creation and initialization, as well as simple indexing.

Note Arithmetic operators, such as addition and subtraction, are no longer
supported as of Release 14.

Constructors

• mwArray()

• mwArray(mxClassID mxID)

• mwArray(mwSize num_rows, mwSize num_cols, mxClassID mxID,
mxComplexity cmplx = mxREAL)

• mwArray(mwSize num_dims, const mwSize* dims, mxClassID mxID,
mxComplexity cmplx = mxREAL)

• mwArray(const char* str)

• mwArray(mwSize num_strings, const char** str)

C-29

C C++ Utility Library Reference

• mwArray(mwSize num_rows, mwSize num_cols, int num_fields,
const char** fieldnames)

• mwArray(mwSize num_dims, const mwSize* dims, int num_fields,
const char** fieldnames)

• mwArray(const mwArray& arr)

• mwArray(<type> re)

• mwArray(<type> re, <type> im)

Methods

• mwArray Clone() const

• mwArray SharedCopy() const

• mwArray Serialize() const

• mxClassID ClassID() const

• int ElementSize() const

• size_t ElementSize() const

• mwSize NumberOfElements() const

• mwSize NumberOfNonZeros() const

• mwSize MaximumNonZeros() const

• mwSize NumberOfDimensions() const

• int NumberOfFields() const

• mwString GetFieldName(int index)

• mwArray GetDimensions() const

• bool IsEmpty() const

• bool IsSparse() const

• bool IsNumeric() const

• bool IsComplex() const

• bool Equals(const mwArray& arr) const

• int CompareTo(const mwArray& arr) const

C-30

mwArray Class

• int HashCode() const

• mwString ToString() const

• mwArray RowIndex() const

• mwArray ColumnIndex() const

• void MakeComplex()

• mwArray Get(mwSize num_indices, ...)

• mwArray Get(const char* name, mwSize num_indices, ...)

• mwArray Get(mwSize num_indices, const mwIndex* index)

• mwArray Get(const char* name, mwSize num_indices, const
mwIndex* index)

• mwArray Real()

• mwArray Imag()

• void Set(const mwArray& arr)

• void GetData(<numeric-type>* buffer, mwSize len) const

• void GetLogicalData(mxLogical* buffer, mwSize len) const

• void GetCharData(mxChar* buffer, mwSize len) const

• void SetData(<numeric-type>* buffer, mwSize len)

• void SetLogicalData(mxLogical* buffer, mwSize len)

• void SetCharData(mxChar* buffer, mwSize len)

Operators

• mwArray operator()(mwIndex i1, mwIndex i2, mwIndex i3, ...,)

• mwArray operator()(const char* name, mwIndex i1, mwIndex i2,
mwIndex i3, ...,)

• mwArray& operator=(const <type>& x)

• operator <type>() const

C-31

C C++ Utility Library Reference

Static Methods

• static mwArray Deserialize(const mwArray& arr)

• static double GetNaN()

• static double GetEps()

• static double GetInf()

• static bool IsFinite(double x)

• static bool IsInf(double x)

• static bool IsNaN(double x)

C-32

mwArray Class Functions

mwArray Class Functions
The functions on the following pages are in the mwArray class:

C-33

mwArray()

Purpose Construct empty array of type mxDOUBLE_CLASS

C++
Syntax

#include "mclcppclass.h"
mwArray a;

Return
Value

None

Description Use this constructor to create an empty array of type mxDOUBLE_CLASS.

C-34

mwArray(mxClassID mxID)

Purpose Construct empty array of specified type

C++
Syntax

#include "mclcppclass.h"
mwArray a(mxDOUBLE_CLASS);

Return
Value

None

Description Use this constructor to create an empty array of the specified type.
You can use any valid mxClassID. See the External Interfaces
documentation for more information on mxClassID.

C-35

mwArray(mwSize num_rows, mwSize num_cols,
mxClassID mxID, mxComplexity cmplx = mxREAL)

Purpose Construct 2-D matrix of specified type and dimensions

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(3, 3, mxSINGLE_CLASS, mxCOMPLEX);
mwArray c(2, 3, mxCELL_CLASS);

Arguments num_rows
The number of rows.

num_cols
The number of columns.

mxID
The data type type of the matrix.

cmplx
The complexity of the matrix (numeric types only).

Return
Value

None

Description Use this constructor to create a matrix of the specified type and
complexity. For numeric types, the matrix can be either real or complex.
You can use any valid mxClassID. Consult the External Interfaces
documentation for more information on mxClassID. For numeric types,
pass mxCOMPLEX for the last argument to create a complex matrix. All
elements are initialized to zero. For cell matrices, all elements are
initialized to empty cells.

C-36

mwArray(mwSize num_dims, const mwSize* dims,
mxClassID mxID, mxComplexity cmplx = mxREAL)

Purpose Construct n-dimensional array of specified type and dimensions

C++
Syntax

#include "mclcppclass.h"
mwSize dims[3] = {2,3,4};
mwArray a(3, dims, mxDOUBLE_CLASS);
mwArray b(3, dims, mxSINGLE_CLASS, mxCOMPLEX);
mwArray c(3, dims, mxCELL_CLASS);

Arguments num_dims
Size of the dims array.

dims
Dimensions of the array.

mxID
The data type type of the matrix.

cmplx
The complexity of the matrix (numeric types only).

Return
Value

None

Description Use this constructor to create an n-dimensional array of the specified
type and complexity. For numeric types, the array can be either real
or complex. You can use any valid mxClassID. Consult the External
Interfaces documentation for more information on mxClassID. For
numeric types, pass mxCOMPLEX for the last argument to create a
complex matrix. All elements are initialized to zero. For cell arrays, all
elements are initialized to empty cells.

C-37

mwArray(const char* str)

Purpose Construct character array from supplied string

C++
Syntax

#include "mclcppclass.h"
mwArray a("This is a string");

Arguments str
NULL-terminated string

Return
Value

None

Description Use this constructor to create a 1-by-n array of type mxCHAR_CLASS, with
n = strlen(str), and initialize the array’s data with the characters in
the supplied string.

C-38

mwArray(mwSize num_strings, const char** str)

Purpose Construct character matrix from list of strings

C++
Syntax

#include "mclcppclass.h"
const char* str[] = {"String1", "String2", "String3"};
mwArray a(3, str);

Arguments num_strings
Number of strings in the input array

str
Array of NULL-terminated strings

Return
Value

None

Description Use this constructor to create a matrix of type mxCHAR_CLASS, and
initialize the array’s data with the characters in the supplied strings.
The created array has dimensions m-by-max, where max is the length of
the longest string in str.

C-39

mwArray(mwSize num_rows, mwSize num_cols, int
num_fields, const char** fieldnames)

Purpose Construct 2-D MATLAB structure matrix of specified dimensions and
field names

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);

Arguments num_rows
Number of rows in the struct matrix.

num_cols
Number of columns in the struct matrix.

num_fields
Number of fields in the struct matrix.

fieldnames
Array of NULL-terminated strings representing the field names.

Return
Value

None

Description Use this constructor to create a matrix of type mxSTRUCT_CLASS, with
the specified field names. All elements are initialized with empty cells.

C-40

mwArray(mwSize num_dims, const mwSize* dims, int
num_fields, const char** fieldnames)

Purpose Construct n-dimensional MATLAB structure array of specified
dimensions and field names

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwSize dims[3] = {2, 3, 4}
mwArray a(3, dims, 3, fields);

Arguments num_dims
Size of the dims array.

dims
Dimensions of the struct array.

num_fields
Number of fields in the struct array.

fieldnames
Array of NULL-terminated strings representing the field names.

Return
Value

None

Description Use this constructor to create an n-dimensional array of type
mxSTRUCT_CLASS, with the specified field names. All elements are
initialized with empty cells.

C-41

mwArray(const mwArray& arr)

Purpose Constructs new mwArray from existing array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(a);

Arguments arr
mwArray to copy.

Return
Value

None

Description Use this constructor to create a copy of an existing array. The new
array contains a deep copy of the input array.

C-42

mwArray(<type> re)

Purpose Construct real scalar array of type of the input argument and initialize
data with input argument’s value

C++
Syntax

#include "mclcppclass.h"
double x = 5.0;
mwArray a(x); // Creates 1X1 double array with value 5.0

Arguments re
Scalar value to initialize array with.

Return
Value

None

Description Use this constructor to create a real scalar array. <type> can be any
of the following:

• mxDouble

• mxSingle

• mxInt8

• mxUint8

• mxInt16

• mxUint16

• mxInt32

• mxUint32

• mxInt64

• mxUint64

• mxLogical

The scalar array is created with the type of the input argument.

C-43

mwArray(<type> re, <type> im)

Purpose Construct complex scalar array of type of input arguments and initialize
real and imaginary parts of data with input argument’s values

C++
Syntax

#include "mclcppclass.h"
double re = 5.0;
double im = 10.0;
mwArray a(re, im); // Creates 1X1 complex array with

// value 5+10i

Arguments re
Scalar value to initialize real part with.

im
Scalar value to initialize imaginary part with.

Return
Value

None

Description Use this constructor to create a complex scalar array. The first input
argument initializes the real part and the second argument initializes
the imaginary part. <type> can be any of the following: mxDouble,
mxSingle, mxInt8, mxUint8, mxInt16, mxUint16, mxInt32, mxUint32,
mxInt64, or mxUint64.

• mxDouble

• mxSingle

• mxInt8

• mxUint8

• mxInt16

• mxUint16

• mxInt32

• mxUint32

• mxInt64

C-44

mwArray(<type> re, <type> im)

• mxUint64

• mxLogical

The scalar array is created with the type of the input arguments.

C-45

mwArray Clone() const

Purpose Return new array representing deep copy of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Clone();

Arguments None

Return
Value

New mwArray representing a deep copy of the original.

Description Use this method to create a copy of an existing array. The new array
contains a deep copy of the input array.

C-46

mwArray SharedCopy() const

Purpose Return new array representing shared copy of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.SharedCopy();

Arguments None

Return
Value

New mwArray representing a reference counted version of the original.

Description Use this method to create a shared copy of an existing array. The new
array and the original array both point to the same data.

C-47

mwArray Serialize() const

Purpose Serialize underlying array into byte array, and return data in new
array of type mxUINT8_CLASS

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray s = a.Serialize();

Arguments None

Return
Value

New mwArray of type mxUINT8_CLASS containing the serialized data.

Description Use this method to serialize an array into bytes. A 1-by-n numeric
matrix of type mxUINT8_CLASS is returned containing the serialized
data. The data can be deserialized back into the original representation
by calling mwArray::Deserialize().

C-48

mxClassID ClassID() const

Purpose Return type of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mxClassID id = a.ClassID();// Should return mxDOUBLE_CLASS

Arguments None

Return
Value

The mxClassID of the array.

Description Use this method to determine the type of the array. Consult the
External Interfaces documentation for more information on mxClassID.

C-49

int ElementSize() const

Purpose Return size in bytes of element of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();// Should return sizeof(double)

Arguments None

Return
Value

The size in bytes of an element of this type of array.

Description Use this method to determine the size in bytes of an element of array
type.

C-50

size_t ElementSize() const

Purpose Return size in bytes of element in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();// Should return sizeof(double)

Arguments None

Return
Value

The size in bytes of an element of this type of array.

Description Use this method to determine the size in bytes of an element of array
type.

C-51

mwSize NumberOfElements() const

Purpose Return number of elements in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfElements();// Should return 4

Arguments None

Return
Value

Number of elements in array.

Description Use this method to determine the total size of the array.

C-52

mwSize NumberOfNonZeros() const

Purpose Return number of nonzero elements for sparse array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfNonZeros();// Should return 4

Arguments None

Return
Value

Actual number of nonzero elements in array.

Description Use this method to determine the size of the of the array’s data. If
the underlying array is not sparse, this returns the same value as
NumberOfElements().

Note This method does not analyze the actual values of the array
elements. Instead, it returns the number of elements that can
potentially be nonzero. This is exactly the number of elements for which
the sparse matrix has allocated storage.

C-53

mwSize MaximumNonZeros() const

Purpose Return maximum number of nonzero elements for sparse array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.MaximumNonZeros();// Should return 4

Arguments None

Return
Value

Number of allocated nonzero elements in array.

Description Use this method to determine the allocated size of the of the array’s
data. If the underlying array is not sparse, this returns the same value
as NumberOfElements().

Note This method does not analyze the actual values of the array
elements.

C-54

mwSize NumberOfDimensions() const

Purpose Return number of dimensions in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfDimensions();// Should return 2

Arguments None

Return
Value

Number of dimensions in array.

Description Use this method to determine the dimensionality of the array.

C-55

int NumberOfFields() const

Purpose Return number of fields in struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
int n = a.NumberOfFields(); // Should return 3

Arguments None

Return
Value

Number of fields in the array.

Description Use this method to determine the number of fields in a struct array. If
the underlying array is not of type struct, zero is returned.

C-56

mwString GetFieldName(int index)

Purpose Return string representing name of (zero-based) field in struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
mwString tempname = a.GetFieldName(1);
const char* name = (const char*)tempname; // Should

// return "b"

Arguments Index
Zero-based field number.

Return
Value

mwString containing the field name.

Description Use this method to determine the name of a given field in a struct
array. If the underlying array is not of type struct, an exception is
thrown.

C-57

mwArray GetDimensions() const

Purpose Return array of type mxINT32_CLASS representing dimensions of array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray dims = a.GetDimensions();

Arguments None

Return
Value

mwArray type mxINT32_CLASS containing the dimensions of the array.

Description Use this method to determine the size of each dimension in the array.
The size of the returned array is 1-by-NumberOfDimensions().

C-58

bool IsEmpty() const

Purpose Return true if underlying array is empty

C++
Syntax

#include "mclcppclass.h"
mwArray a;
bool b = a.IsEmpty(); // Should return true

Arguments None

Return
Value

Boolean indicating if the array is empty.

Description Use this method to determine if an array is empty.

C-59

bool IsSparse() const

Purpose Return true if underlying array is sparse

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsSparse(); // Should return false

Arguments None

Return
Value

Boolean indicating if the array is sparse.

Description Use this method to determine if an array is sparse.

C-60

bool IsNumeric() const

Purpose Return true if underlying array is numeric

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsNumeric(); // Should return true.

Arguments None

Return
Value

Boolean indicating if the array is numeric.

Description Use this method to determine if an array is numeric.

C-61

bool IsComplex() const

Purpose Return true if underlying array is complex

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
bool b = a.IsComplex(); // Should return true.

Arguments None

Return
Value

Boolean indicating if the array is complex.

Description Use this method to determine if an array is complex.

C-62

bool Equals(const mwArray& arr) const

Purpose Test two arrays for equality

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
bool c = a.Equals(b); // Should return true.

Arguments arr
Array to compare to array.

Return
Value

Boolean value indicating the equality of the two arrays.

Description Returns true if the input array is byte-wise equal to this array. This
method makes a byte-wise comparison of the underlying arrays.
Therefore, arrays of the same type should be compared. Arrays of
different types will not in general be equal, even if they are initialized
with the same data.

C-63

int CompareTo(const mwArray& arr) const

Purpose Compare two arrays for order

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
int n = a.CompareTo(b); // Should return 0

Arguments arr
Array to compare to this array.

Return
Value

Returns a negative integer, zero, or a positive integer if this array is
less than, equal to, or greater than the specified array.

Description Compares this array with the specified array for order. This method
makes a byte-wise comparison of the underlying arrays. Therefore,
arrays of the same type should be compared. Arrays of different types
will, in general, not be ordered equivalently, even if they are initialized
with the same data.

C-64

int HashCode() const

Purpose Return hash code for array

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
int n = a.HashCode();

Arguments None

Return
Value

An integer value representing a unique hash code for the array.

Description This method constructs a unique hash value form the underlying bytes
in the array. Therefore, arrays of different types will have different
hash codes, even if they are initialized with the same data.

C-65

mwString ToString() const

Purpose Return string representation of underlying array

C++
Syntax

#include <stdio.h>
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real() = 1.0;
a.Imag() = 2.0;
printf("%s\n", (const char*)(a.ToString()));// Should print

// "1 + 2i" on
// screen.

Arguments None

Return
Value

An mwString containing the string representation of the array.

Description This method returns a string representation of the underlying array.
The string returned is the same string that is returned by typing a
variable’s name at the MATLAB command prompt.

C-66

mwArray RowIndex() const

Purpose Return array containing row indices of each element in array

C++
Syntax

#include <stdio.h>
#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.RowIndex();

Arguments None

Return
Value

An mwArray containing the row indices.

Description Returns an array of type mxINT32_CLASS representing the row indices
(first dimension) of this array. For sparse arrays, the indices are
returned for just the non-zero elements and the size of the array
returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size
of the array returned is 1-by-NumberOfElements(), and the row indices
of all of the elements are returned.

C-67

mwArray ColumnIndex() const

Purpose Return array containing column indices of each element in array

C++
Syntax

#include "mclcppclass.h"
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.ColumnIndex();

Arguments None

Return
Value

An mwArray containing the column indices.

Description Returns an array of type mxINT32_CLASS representing the column
indices (second dimension) of this array. For sparse arrays, the indices
are returned for just the non-zero elements and the size of the array
returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size
of the array returned is 1-by-NumberOfElements(), and the column
indices of all of the elements are returned.

C-68

void MakeComplex()

Purpose Convert real numeric array to complex

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.MakeComplex();
a.Imag().SetData(idata, 4);

Arguments None

Return
Value

None

Description Use this method to convert a numeric array that has been previously
allocated as real to complex. If the underlying array is of a nonnumeric
type, an mwException is thrown.

C-69

mwArray Get(mwSize num_indices, ...)

Purpose Return single element at specified 1-based index

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1,1); // x = 1.0
x = a.Get(2, 1, 2); // x = 3.0
x = a.Get(2, 2, 2); // x = 4.0

Arguments num_indices
Number of indices passed in.

...
Comma-separated list of input indices. Number of items must
equal num_indices but should not exceed 32.

Return
Value

An mwArray containing the value at the specified index.

Description Use this method to fetch a single element at a specified index. The
index is passed by first passing the number of indices followed by
a comma-separated list of 1-based indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is
thrown if an invalid number of indices is passed in or if any index is
out of bounds.

C-70

mwArray Get(const char* name, mwSize num_indices,
...)

Purpose Return single element at specified field name and 1-based index in
struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};

mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, 1); // b=a(1).a;
mwArray b = a.Get("b", 2, 1, 1); // b=a(1,1).b;

Arguments name
NULL-terminated string containing the field name to get.

num_indices
Number of indices passed in.

...
Comma-separated list of input indices. Number of items must
equal num_indices.

Return
Value

An mwArray containing the value at the specified field name and index.

Description Use this method to fetch a single element at a specified field name
and index. This method may only be called on an array that is of
type mxSTRUCT_CLASS. An mwException is thrown if the underlying
array is not a struct array. The field name passed must be a valid
field name in the struct array. The index is passed by first passing
the number of indices followed by a comma-separated list of 1-based
indices. The valid number of indices that can be passed in is either 1
(single subscript indexing), in which case the element at the specified
1-based offset is returned, accessing data in column-wise order, or
NumberOfDimensions() (multiple subscript indexing), in which case,
the index list is used to access the specified element. The valid range
for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the
valid range: 1 <= index[i] <= GetDimensions().Get(1, i). An

C-71

mwArray Get(const char* name, mwSize num_indices,
...)

mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

C-72

mwArray Get(mwSize num_indices, const mwIndex*
index)

Purpose Return single element at specified 1-based index

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
int index[2] = {1, 1};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1, index); // x = 1.0
x = a.Get(2, index); // x = 1.0
index[0] = 2;
index[1] = 2;
x = a.Get(2, index); // x = 4.0

Arguments num_indices
Size of index array.

index
Array of at least size num_indices containing the indices.

Return
Value

An mwArray containing the value at the specified index.

Description Use this method to fetch a single element at a specified index. The
index is passed by first passing the number of indices, followed by an
array of 1-based indices. The valid number of indices that can be passed
in is either 1 (single subscript indexing), in which case the element at
the specified 1-based offset is returned, accessing data in column-wise
order, or NumberOfDimensions() (multiple sub-script indexing), in
which case, the index list is used to access the specified element. The
valid range for indices is 1 <= index <= NumberOfElements(), for
single subscript indexing. For multiple subscript indexing, the ith index
has the valid range: 1 <= index[i] <= GetDimensions().Get(1, i).
An mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

C-73

mwArray Get(const char* name, mwSize num_indices,
const mwIndex* index)

Purpose Return single element at specified field name and 1-based index in
struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, index); // b=a(1).a;
mwArray b = a.Get("b", 2, index); // b=a(1,1).b;

Arguments name
NULL-terminated string containing the field name to get.

num_indices
Number of indices passed in.

index
Array of at least size num_indices containing the indices.

Return
Value

An mwArray containing the value at the specified field name and index.

Description Use this method to fetch a single element at a specified field name
and index. This method may only be called on an array that is of type
mxSTRUCT_CLASS. An mwException is thrown if the underlying array is
not a struct array. The field name passed must be a valid field name
in the struct array. The index is passed by first passing the number
of indices followed by an array of 1-based indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is

C-74

mwArray Get(const char* name, mwSize num_indices,
const mwIndex* index)

thrown if an invalid number of indices is passed in or if any index is
out of bounds.

C-75

mwArray Real()

Purpose Return mwArray that references real part of complex array

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);
a.Imag().SetData(idata, 4);

Arguments None

Return
Value

An mwArray referencing the real part of the array.

Description Use this method to access the real part of a complex array. The returned
mwArray is considered real and has the same dimensionality and type
as the original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors
(pairs). For example, if the number is 3+5i, then the pair is (3,5i). An
array of Complex numbers is therefore two dimensional (N X 2), where
N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i
would be represented as (2,4i) (7,3i) (8,6i). Complex numbers
have two components, real and imaginary.

The MATLAB functions Real and Imag can be applied to an array of
Complex numbers. These functions extract the corresponding part of
the Complex number. For example, REAL(3,5i) == 3 and IMAG(3+5i)
== 5. Imag returns 5 in this case and not 5i. Imag returns the
magnitude of the imaginary part of the number as a real number.

C-76

mwArray Imag()

Purpose Return mwArray that references imaginary part of complex array

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);
a.Imag().SetData(idata, 4);

Arguments None

Return
Value

An mwArray referencing the imaginary part of the array.

Description Use this method to access the imaginary part of a complex array. The
returned mwArray is considered real and has the same dimensionality
and type as the original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors
(pairs). For example, if the number is 3+5i, then the pair is (3,5i). An
array of Complex numbers is therefore two dimensional (N X 2), where
N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i
would be represented as (2,4i) (7,3i) (8,6i). Complex numbers
have two components, real and imaginary.

The MATLAB functions Real and Imag can be applied to an array of
Complex numbers. These functions extract the corresponding part of
the Complex number. For example, REAL(3,5i) == 3 and IMAG(3+5i)
== 5. Imag returns 5 in this case and not 5i. Imag returns the
magnitude of the imaginary part of the number as a real number.

C-77

void Set(const mwArray& arr)

Purpose Assign shared copy of input array to currently referenced cell for arrays
of type mxCELL_CLASS and mxSTRUCT_CLASS

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(2, 2, mxINT16_CLASS);
mwArray c(1, 2, mxCELL_CLASS);
c.Get(1,1).Set(a); // Sets c(1) = a
c.Get(1,2).Set(b); // Sets c(2) = b

Arguments arr
mwArray to assign to currently referenced cell.

Return
Value

None

Description Use this method to construct cell and struct arrays.

C-78

void GetData(<numeric-type>* buffer, mwSize len)
const

Purpose Copy array’s data into supplied numeric buffer

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

Arguments buffer
Buffer to receive copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description Valid types for <numeric-type> are:

• mxDOUBLE_CLASS

• mxSINGLE_CLASS

• mxINT8_CLASS

• mxUINT8_CLASS

• mxINT16_CLASS

• mxUINT16_CLASS

• mxINT32_CLASS

• mxUINT32_CLASS

• mxINT64_CLASS

• mxUINT64_CLASS

C-79

void GetData(<numeric-type>* buffer, mwSize len) const

The data is copied in column-major order. If the underlying array is not
of the same type as the input buffer, the data is converted to this type as
it is copied. If a conversion cannot be made, an mwException is thrown.

C-80

void GetLogicalData(mxLogical* buffer, mwSize len)
const

Purpose Copy array’s data into supplied mxLogical buffer

C++
Syntax

#include "mclcppclass.h"
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetData(data, 4);
a.GetData(data_copy, 4);

Arguments buffer
Buffer to receive copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxLOGICAL_CLASS, the data is converted to this type as it is
copied. If a conversion cannot be made, an mwException is thrown.

C-81

void GetCharData(mxChar* buffer, mwSize len) const

Purpose Copy array’s data into supplied mxChar buffer

C++
Syntax

#include "mclcppclass.h"
mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetData(data, 6);
a.GetData(data_copy, 6);

Arguments buffer
Buffer to receive copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxCHAR_CLASS, the data is converted to this type as it is copied.
If a conversion cannot be made, an mwException is thrown.

C-82

void SetData(<numeric-type>* buffer, mwSize len)

Purpose Copy data from supplied numeric buffer into array

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

Arguments buffer
Buffer containing data to copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description Valid types for <numeric-type> are mxDOUBLE_CLASS, mxSINGLE_CLASS,
mxINT8_CLASS, mxUINT8_CLASS, mxINT16_CLASS, mxUINT16_CLASS,
mxINT32_CLASS, mxUINT32_CLASS, mxINT64_CLASS, and
mxUINT64_CLASS. The data is copied in column-major order. If the
underlying array is not of the same type as the input buffer, the data is
converted to this type as it is copied. If a conversion cannot be made,
an mwException is thrown.

C-83

void SetLogicalData(mxLogical* buffer, mwSize len)

Purpose Copy data from supplied mxLogical buffer into array

C++
Syntax

#include "mclcppclass.h"
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetData(data, 4);
a.GetData(data_copy, 4);

Arguments buffer
Buffer containing data to copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxLOGICAL_CLASS, the data is converted to this type as it is
copied. If a conversion cannot be made, an mwException is thrown.

C-84

void SetCharData(mxChar* buffer, mwSize len)

Purpose Copy data from supplied mxChar buffer into array

C++
Syntax

#include "mclcppclass.h"
mxChar data[6] = {'H', 'e' , 'l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetData(data, 6);
a.GetData(data_copy, 6);

Arguments buffer
Buffer containing data to copy.

len
Maximum length of buffer. A maximum of len elements will be
copied.

Return
Value

None

Description The data is copied in column-major order. If the underlying array is not
of type mxCHAR_CLASS, the data is converted to this type as it is copied.
If a conversion cannot be made, an mwException is thrown.

C-85

mwArray operator()(mwIndex i1, mwIndex i2,
mwIndex i3, ...,)

Purpose Return single element at specified 1-based index

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a(1,1); // x = 1.0
x = a(1,2); // x = 3.0
x = a(2,2); // x = 4.0

Arguments i1, i2, i3, ...,
Comma-separated list of input indices.

Return
Value

An mwArray containing the value at the specified index.

Description Use this operator to fetch a single element at a specified index.
The index is passed as a comma-separated list of 1-based indices.
This operator is overloaded to support 1 through 32 indices. The
valid number of indices that can be passed in is either 1 (single
subscript indexing), in which case the element at the specified
1-based offset is returned, accessing data in column-wise order, or
NumberOfDimensions() (multiple subscript indexing), in which case,
the index list is used to access the specified element. The valid range
for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the
valid range: 1 <= index[i] <= GetDimensions().Get(1, i). An
mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

C-86

mwArray operator()(const char* name, mwIndex i1,
mwIndex i2, mwIndex i3, ...,)

Purpose Return single element at specified field name and 1-based index in
struct array

C++
Syntax

#include "mclcppclass.h"
const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a("a", 1, 1); // b=a(1).a;
mwArray b = a("b", 1, 1); // b=a(1,1).b;

Arguments name
NULL-terminated string containing the field name to get.

i1, i2, i3, ...,
Comma-separated list of input indices.

Return
Value

An mwArray containing the value at the specified field name and index

Description Use this method to fetch a single element at a specified field name
and index. This method may only be called on an array that is of type
mxSTRUCT_CLASS. An mwException is thrown if the underlying array is
not a struct array. The field name passed must be a valid field name
in the struct array. The index is passed by first passing the number
of indices, followed by an array of 1-based indices. This operator is
overloaded to support 1 through 32 indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is
thrown if an invalid number of indices is passed in or if any index is
out of bounds.

C-87

mwArray& operator=(const <type>& x)

Purpose Assign single scalar value to array

C++
Syntax

#include "mclcppclass.h"
mwArray a(2, 2, mxDOUBLE_CLASS);
a(1,1) = 1.0; // assigns 1.0 to element (1,1)
a(1,2) = 2.0; // assigns 2.0 to element (1,2)
a(2,1) = 3.0; // assigns 3.0 to element (2,1)
a(2,2) = 4.0; // assigns 4.0 to element (2,2)

Arguments x
Value to assign.

Return
Value

A reference to the invoking mwArray.

Description Use this operator to set a single scalar value. This operator is
overloaded for all numeric and logical types.

C-88

operator <type>() const

Purpose Fetch single scalar value from array

C++
Syntax

#include "mclcppclass.h"
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = (double)a(1,1); // x = 1.0
x = (double)a(1,2); // x = 3.0
x = (double)a(2,1); // x = 2.0
x = (double)a(2,2); // x = 4.0

Arguments None

Return
Value

A single scalar value from the array.

Description Use this operator to fetch a single scalar value. This operator is
overloaded for all numeric and logical types.

C-89

static mwArray Deserialize(const mwArray& arr)

Purpose Deserialize array that was serialized with mwArray::Serialize

C++
Syntax

#include "mclcppclass.h"
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
mwArray a(1,4,mxDOUBLE_CLASS);
a.SetData(rdata, 4);
mwArray b = a.Serialize();
a = mwArray::Deserialize(b);// a should contain same

// data as original

Arguments arr
mwArray that has been obtained by calling mwArray::Serialize.

Return
Value

A new mwArray containing the deserialized array.

Description Use this method to deserialize an array that has been serialized
with mwArray::Serialize(). The input array must be of type
mxUINT8_CLASS and contain the data from a serialized array. If the
input data does not represent a serialized mwArray, the behavior of
this method is undefined.

C-90

static double GetNaN()

Purpose Get value of NaN (Not-a-Number)

C++
Syntax

#include "mclcppclass.h"
double x = mwArray::GetNaN();

Arguments None

Return
Value

The value of NaN (Not-a-Number) on your system.

Description Call mwArray::GetNaN to return the value of NaN for your system. NaN
is the IEEE arithmetic representation for Not-a-Number. Certain
mathematical operations return NaN as a result, for example:

• 0.0/0.0

• Inf-Inf

The value of NaN is built in to the system; you cannot modify it.

C-91

static double GetEps()

Purpose Get value of eps

C++
Syntax

#include "mclcppclass.h"
double x = mwArray::GetEps();

Arguments None

Return
Value

The value of the MATLAB eps variable.

Description Call mwArray::GetEps to return the value of the MATLAB eps variable.
This variable is the distance from 1.0 to the next largest floating-point
number. Consequently, it is a measure of floating-point accuracy. The
MATLAB pinv and rank functions use eps as a default tolerance.

C-92

static double GetInf()

Purpose Get value of Inf (infinity)

C++
Syntax

#include "mclcppclass.h"
double x = mwArray::GetInf();

Arguments None

Return
Value

The value of Inf (infinity) on your system.

Description Call mwArray::GetInf to return the value of the MATLAB internal Inf
variable. Inf is a permanent variable representing IEEE arithmetic
positive infinity. The value of Inf is built into the system; you cannot
modify it.

Operations that return Inf include

• Division by 0. For example, 5/0 returns Inf.

• Operations resulting in overflow. For example, exp(10000) returns
Inf because the result is too large to be represented on your machine.

C-93

static bool IsFinite(double x)

Purpose Test if value is finite and return true if value is finite

C++
Syntax

#include "mclcppclass.h"
bool x = mwArray::IsFinite(1.0); // Returns true

Arguments Value to test for finiteness.

Return
Value

Result of test.

Description Call mwArray::IsFinite to determine whether or not a value is finite.
A number is finite if it is greater than -Inf and less than Inf.

C-94

static bool IsInf(double x)

Purpose Test if value is infinite and return true if value is infinite

C++
Syntax

#include "mclcppclass.h"
bool x = mwArray::IsInf(1.0); // Returns false

Arguments Value to test for infinity.

Return
Value

Result of test.

Description Call mwArray::IsInf to determine whether or not a value is equal to
infinity or minus infinity. MATLAB stores the value of infinity in a
permanent variable named Inf, which represents IEEE arithmetic
positive infinity. The value of the variable, Inf, is built into the system;
you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns
infinity because the result is too large to be represented on your
machine. If the value equals NaN (Not-a-Number), then mxIsInf
returns false. In other words, NaN is not equal to infinity.

C-95

static bool IsNaN(double x)

Purpose Test if value is NaN (Not-a-Number) and return true if value is NaN

C++
Syntax

#include "mclcppclass.h"
bool x = mwArray::IsNaN(1.0); // Returns false

Arguments Value to test for NaN.

Return
Value

Result of test.

Description Call mwArray::IsNaN to determine whether or not the value is NaN.
NaN is the IEEE arithmetic representation for Not-a-Number. NaN is
obtained as a result of mathematically undefined operations such as

• 0.0/0.0

• Inf-Inf

The system understands a family of bit patterns as representing NaN. In
other words, NaN is not a single value, rather it is a family of numbers
that the MATLAB software (and other IEEE-compliant applications)
use to represent an error condition or missing data.

C-96

Index

IndexA
Accessibility

DLLs to add to path enabling 10-2
addpath command 4-18
Addressing

Extended
2 GB Limit 7-3

Advanced Encryption Standard (AES)
cryptosystem 3-2

ANSI compiler
installing 2-5

application
POSIX main 5-11

application coding with
M-files and C/C++ files 6-10
M-files only 6-8

Assistive technologies
DLLs to add to path enabling 10-2

axes objects 9-5

B
build process 3-3
built-in function

calling from C/C++ 5-27
bundle file 5-9

C
C

interfacing to M-code 5-14
shared library wrapper 5-12

C++
interfacing to M-code 5-14
library wrapper 5-13
primitive types C-2
utility classes C-3

C/C++ 3-5
compilers

supported on UNIX 2-3
supported on Windows 2-3

cache 12-39
linux

mcc 12-39
callback problems

fixing 9-3
callback strings

searching M-files for 9-5
code

porting 4-16
compilation path 4-17
Compile 1-2
Compiler

license 10-8
M-files 1-2
MEX-files 1-2
security 3-2

compilers
supported on UNIX 2-3
supported on Windows 2-3

compiling
complete syntactic details 12-27
shared library quick start 1-16

Component Technology File (CTF) 3-2
compopts.bat 2-12
configuring

C/C++ compiler 2-7
using mbuild 2-7

conflicting options
resolving 5-3

CTF (Component Technology File) archive 3-2
determining files to include 4-17
extracting without executing 4-17

CTF Archive
Controlling management and storage

of. 5-20
CTF file 3-2

Index-1

Index

D
debugging 5-29

-G option flag 12-31
dependency analysis 3-4
depfun 4-17
deployed applications

troubleshooting 8-20
deploying applications that call Java™ native

libraries 5-29
deploying components

from a network drive 4-35
deploying GUIs with ActiveX controls 5-28
deploying recompiled applications 4-24
deploying to different platforms 4-16
deployment 4-2
deployprint function 12-10
deploytool

quick start 1-10
deploytool function 12-12
directory

user profile 2-12
DLL. See shared library 7-2
double-clickable application

passing arguments 5-33

E
encryption and compression 3-5
error messages

compile-time B-2
Compiler B-2
depfun B-9
internal error B-2
warnings B-6

export list 5-12
extractCTF utility 4-17
extracting

CTF archive without executing 4-17

F
feval 12-5

using 5-22
feval pragma 12-5
.fig file

locating in deployed applications 5-29
figure objects 9-5
Figures

Keeping open by blocking execution of
console application 5-30

Terminating by force 5-30
file

license.dat 2-4
file extensions 5-3
files

bundle 5-9
license.dat 2-4
wrapper 1-5

full path names
handling 5-8

function
calling from command line 5-28
calling from M-code 5-14
comparison to scripts 5-25
unsupported in standalone mode 9-9
wrapper 5-11

%#function 12-5
using 5-22

function M-file 5-25
functions

unsupported 9-9

G
-G option flag 12-31
getmcruserdata function 12-13 12-15
GUI

compiling with ActiveX controls 5-28
deploying

as shared library 5-33

Index-2

Index

displaying 5-33

H
Handle Graphics 9-5
hardcopy function 12-16

I
input/output files 3-6

C shared library 3-7
C++ shared library 3-9
Macintosh 3-11
standalone 3-6

interfacing
M-code to C/C++ code 5-14

internal error B-2
isdeployed 8-16 12-17
ismcc 12-18

J
Java™ native libraries

deploying applications that call 5-29

L
lcccompp.bat file 2-9
libraries

overview 1-16
library

shared C/C++ 7-2
wrapper 5-13

<library>Initialize[WithHandlers] 12-19
<library>Terminate 12-20
license problem 2-4 8-16 10-8
license.dat file 2-4
licensing 10-8
limitations

Windows compilers 2-11
linking

stage of compilation 3-5
Load function 3-12
loadlibrary 7-16
locating

.fig files in deployed applications 5-29
log

installation process 10-12

M
-m option flag 6-9
-M option flag 12-33
M-file

encrypting 3-2
example

main.m 6-8
mrank.m 6-8

function 5-25
script 5-25
searching for callback strings 9-5

Mac OS X
using shared library 7-34

macros 5-5
main program 5-11
main wrapper 5-11
main.m 6-8
MAT files 3-12
MAT-files in deployed applications 5-28
MATLAB Compiler

error messages B-2
flags 5-2
macro 5-5
options 5-2

summarized A-4
syntax 12-27
system requirements

UNIX 2-2
troubleshooting 8-16
warning messages B-2

MATLAB® Compiler™

Index-3

Index

installing
on Microsoft Windows 2-4
on UNIX 2-4

MATLAB Compiler license 10-8
MATLAB® Compiler™ Runtime (MCR) 3-2
MATLAB data files 3-12
matrixdriver

on Mac OS X 7-37
mbuild 2-7

options 12-21
troubleshooting 8-14

mcc 12-27
Compiler 2.3 options A-4
Overview 5-2
syntax 5-2

mclGetLogFileName 12-41
mclGetMCRUserData function 12-42
mclInitializeApplication 12-43
mclIsJVMEnabled 12-46
mclIsMCRInitialized 12-47
mclIsNoDisplaySet 12-48
mclKillAllFigures 5-30
mclKillAllFigures function 12-49
mclSetCmdLineUserData function 12-50
mclSetMCRUserData function 12-53
mclTerminateApplication 12-55
mclWaitForFiguresToDie 5-30
mclWaitForFiguresToDie function 12-57
MCR

installing
options 10-9

MCR (MATLAB® Compiler™ Runtime) 3-2
installing

multiple MCRs on same machine 4-24
on deployment machine 4-11
with MATLAB® on same machine 4-22

instance 7-11
options 7-11

MCR Component Cache
How to use

Overriding CTF embedding 5-20
MCR initialization

start-up and completion user messages 4-33
MCR Installer options

on Windows systems 10-10
Memory Cleanup 7-38
Memory Management 7-38
Microsoft Visual C++ 2-3
mlx interface function 7-30
mrank.m 6-8
MSVC. See Microsoft Visual C++ 2-3
msvc60compp.bat file 2-9
msvc80compp.bat file 2-9
msvc90compp.bat file 2-9
MWComponentOptions 5-20
MX_COMPAT_32_OFF 7-3
mxArrays

Passing to shared libraries 7-38

N
network drive

deploying from 4-35
-nocache 12-39

O
objects (Handle Graphics) 9-5
options 5-2

combining 5-2
Compiler 2.3 A-4
grouping 5-2
macros 5-5
resolving conflicting 5-3
specifying 5-2

options file 2-12
changing 2-13
locating 2-12
modifying on

UNIX 2-14

Index-4

Index

Windows 2-13
UNIX 2-10
Windows 2-8

P
pass through

-M option flag 12-33
passing

arguments to standalone applications 5-31
path

user interaction 4-17
-I option 4-19
-N and -p 4-19

path names
handling full 5-8

PLP (personal license password) 2-4
porting code 4-16
POSIX main application 5-11
POSIX main wrapper 5-11
pragma

feval 12-5
%#function 12-5

primitive types C-2
problem with license 2-4

Q
quick start

compiling a shared library 1-16
quotation marks

with mcc options 5-10
quotes

with mcc options 5-10

R
resolving

conflicting options 5-3
rmpath 4-18

S
Save function 3-12
script file 5-25

including in deployed applications 5-26
script M-file 5-25

converting to function M-files 5-25
security 3-2
setmcruserdata function 12-63
shared library 7-4

calling structure 7-26
header file 5-12
using on Mac OS X 7-34
wrapper 5-12

Shared Library
Creating 1-14

Standalone application
Creating 1-14

standalone application. See wrapper file 1-5
standalone applications 6-1

passing arguments 5-31
restrictions on 9-9
restrictions on Compiler 2.3 9-9

system requirements 2-2

T
troubleshooting

Compiler problems 8-16
deployed applications 8-20
mbuild problems 8-14
missing functions 9-3

U
uicontrol objects 9-5
uimenu objects 9-5
UNIX

options file 2-10
locating 2-12

supported compilers 2-3

Index-5

Index

system requirements 2-2
unsupported functions 9-9
user messages

customizable 4-33
user profile directory 2-12

V
varargin 7-32
varargout 7-32

W
WaitForFiguresToDie 5-33
warning message

Compiler B-2
Windows

options file 2-8
locating 2-12

Windows compiler
limitations 2-11

wrapper code generation 3-5
wrapper file 1-5
wrapper function 5-11
wrappers

C shared library 5-12
C++ library 5-13
main 5-11

Z
-z option flag 12-38

Index-6

	toc
	Getting Started
	Product Overview
	What Does This Product Do?
	When To Use MATLAB Compiler
	When Not To Use MATLAB Compiler
	How Do I Use This Product?
	How Does This Product Work?
	MATLAB Compiler Generated Applications and Libraries
	Wrapper Files

	What Is The MATLAB Compiler Runtime (MCR)?

	Before You Use MATLAB Compiler
	Understand Your Role in the Application Deployment Process
	Verify Your Knowledge Base
	Install Required Products
	Select Your C or C++ Compiler with mbuild -setup

	Deploying with the Magic Square Example
	About This Example
	Command-Line Alternative

	Magic Square Example: MATLAB Programmer Tasks
	Starting the Deployment Tool
	Copying the Example Files
	Testing the M-File You Want To Deploy
	Creating a Deployable Standalone Application or Shared Library
	Packaging Your Deployment Application (Optional)
	Copy the Package You Created (Optional)
	Using the Command Line (mcc) to Create Standalone Applications a

	Magic Square Example: C/C++ Programmer Tasks
	Gathering Files Necessary for Deployment
	Distribute to End Users
	Install the MCR on Target Computers Without MATLAB and Update Sy
	What Is the MATLAB Compiler Runtime (MCR) and How Do I Get It?
	Build and Test

	For More Information

	Installation and Configuration
	Requirements
	System Requirements
	Supported Third-Party Compilers
	Supported ANSI C and C++ Windows Compilers
	Supported ANSI C and C++ UNIX Compilers

	Installation
	Installing MATLAB Compiler
	Windows Operating System
	UNIX Operating System

	Installing an ANSI C or C++ Compiler

	Configuration
	About the mbuild Utility
	Configuring an ANSI C or C++ Compiler
	Compiler Options Files

	Supported Compiler Restrictions
	Options Files
	Locating the Options File
	Windows Operating System
	UNIX Operating System

	Changing the Options File
	Windows Operating System
	UNIX Operating System

	Compilation Process
	Overview of MATLAB Compiler Technology
	MATLAB Compiler Runtime
	Component Technology File
	Additional Details

	Build Process
	Dependency Analysis
	Wrapper Code Generation
	Archive Creation
	C/C++ Compilation
	Linking

	Input and Output Files
	Standalone Executable
	C Shared Library
	C++ Shared Library
	Macintosh 64 (Maci64)

	Working with MATLAB Data Files Using Load and Save
	Example: Using Load/Save Functions To Process MATLAB Data for De
	ex_loadsave.m

	Deployment Process
	Overview
	Deploying to Programmers
	Steps by the Programmer to Deploy to Programmers
	What Software Does a Programmer Need?
	Standalone Application
	C or C++ Shared Library
	.NET Component
	COM Component
	Java Component
	COM Component to Use with Microsoft Excel

	Ensuring Memory for Deployed Applications

	Deploying to End Users
	Steps by the Programmer to Deploy to End Users
	Steps by the End User
	Using the MCR Installer GUI
	What Software Does the End User Need?
	Standalone Compiled Application That Accesses Shared Library
	.NET Application
	COM Application
	Java Application
	Microsoft Excel Add-In

	Using Relative Paths with Project Files
	Porting Generated Code to a Different Platform
	Extracting a CTF Archive Without Executing the Component
	Dependency Analysis Function (depfun) and User Interaction with
	addpath and rmpath in MATLAB
	Passing -I <directory> on the Command Line
	Passing -N and -p <directory> on the Command Line

	Ensuring Memory for Deployed Applications

	Working with the MCR
	Understanding the MCR
	Installing the MCR and MATLAB on the Same Machine
	Modifying the Path

	Installing Multiple MCRs on One Machine
	Deploying a Recompiled Application

	Retrieving MCR Attributes
	Example: Retrieving Information from MCR State

	Improving Data Access Using the MCR User Data Interface
	MATLAB Functions
	External C Functions
	Setting MCR Data for Standalone Executables
	Setting and Retrieving MCR Data for Shared Libraries
	Building on UNIX
	Building on Windows
	Running on UNIX
	Running on Windows
	Running on 64-bit Macintosh
	magicmatrix.c

	Deploying Applications Created Using Parallel Computing Toolbox

	Displaying MCR Initialization Start-Up and Completion Messages F

	Deploying a Standalone Application on a Network Drive
	MATLAB Compiler Deployment Messages
	Using MATLAB Compiler Generated DLLs in Windows Services
	Reserving Memory for Deployed Applications with MATLAB Memory Sh
	What Is MATLAB Memory Shielding and When Should You Use It?
	Requirements for Using MATLAB Memory Shielding
	Invoking MATLAB Memory Shielding for Your Deployed Application
	Using the Command Line
	Using the GUI

	Compiler Commands
	Command Overview
	Compiler Options
	Combining Options
	Conflicting Options on the Command Line
	Using File Extensions

	Using Macros to Simplify Compilation
	Macro Options
	Working With Macro Options
	Changing Macro Options
	Specifying Default Macro Options

	Using Path Names
	Using Bundle Files
	Using Wrapper Files
	What Are Wrapper Files?
	Main File Wrapper
	POSIX Main Wrapper

	C Library Wrapper
	C++ Library Wrapper

	Interfacing M-Code to C/C++ Code
	Overview
	Code Proper Return Types From C and C++ Methods
	C Example
	C++ Example

	Overriding Default CTF Archive Embedding Using the MCR Component
	Using Pragmas
	Using feval
	Example: Using %#function

	Using mxArray
	Script Files
	Converting Script M-Files to Function M-Files
	Including Script Files in Deployed Applications

	Compiler Tips
	Calling Built-In Functions from C or C++
	Calling a Function from the Command Line
	Using MAT-Files in Deployed Applications
	Compiling a GUI That Contains an ActiveX Control
	Debugging MATLAB Compiler Generated Executables
	Deploying Applications That Call the Java Native Libraries
	Locating .fig Files in Deployed Applications
	Blocking Execution of a Console Application That Creates Figures
	Blocking Execution of a Console Application with the mclWaitForF
	Terminating Figures by Force with the mclKillAllFigures Method

	Passing Arguments to and from a Standalone Application
	Passing Arguments to a Double-Clickable Application

	Using Graphical Applications in Shared Library Targets
	Using the VER Function in a Compiled MATLAB Application

	Standalone Applications
	Introduction
	C Standalone Application Target
	Compiling the Application
	Testing the Application
	Deploying the Application
	Windows
	UNIX
	Maci64

	Running the Application
	Preparing Your Machines
	Executing the Application

	Coding with M-Files Only
	M-File Advantages
	Example
	mrank.m
	main.m
	Compiling the Example

	Mixing M-Files and C or C++
	Examples Overview
	Simple Example
	mrank.m
	Build Process
	mrankp.c
	Explanation of mrankp.c

	Advanced C Example
	Explanation of This C Code

	Libraries
	Introduction
	Addressing mwArrays Above the 2 GB Limit
	C Shared Library Target
	C Shared Library Wrapper
	C Shared Library Example
	Building the Shared Library
	Writing the Driver Application
	Compiling the Driver Application
	Testing the Driver Application
	Creating Shared Libraries from C with mbuild
	Deploying Standalone Applications That Call MATLAB Compiler Base
	Deploying Shared Libraries to Be Used with Other Projects

	Calling a Shared Library
	Initializing and Terminating Your Application with mclInitialize
	Initializing and Terminating Your Application Multiple Times Wit
	Using a Shared Library
	Loading Libraries in a Compiled Function

	C++ Shared Library Target
	C++ Shared Library Wrapper
	C++ Shared Library Example
	Writing the Driver Application
	Compiling the Driver Application
	Incorporating a C++ Shared Library into an Application
	Exported Function Signature
	Error Handling

	MATLAB Compiler Generated Interface Functions
	Functions in the Shared Library
	Type of Application
	For a C Application on Windows
	For a C Application on UNIX
	For a C++ Application on Windows
	For a C++ Application on UNIX

	Structure of Programs That Call Shared Libraries
	Library Initialization and Termination Functions
	Print and Error Handling Functions
	Functions Generated from M-Files
	mlx Interface Function
	mlf Interface Function
	Using varargin and varargout in an M-Function Interface

	Retrieving MCR State Information While Using Shared Libraries

	Using C/C++ Shared Libraries on a Mac OS X System
	About Memory Management and Cleanup
	Overview
	Passing mxArrays to Shared Libraries

	Troubleshooting
	Introduction
	Common Issues
	Failure Points and Possible Solutions
	How to Use this Section
	Does the Failure Occur During Compilation?
	Is your selected compiler supported by MATLAB Compiler ?
	Are error messages produced at compile time?
	Did you compile with the verbose flag?
	Are you compiling within or outside of MATLAB ?
	Does a simple read/write application such as “Hello World” compi
	Have you tried to compile any of the examples in MATLAB Compiler
	Does your code compile with the LCC compiler?
	Did the M-code compile successfully before this failure?
	Are you receiving errors when trying to compile a shared library
	If you are compiling a driver application, are you using mbuild?
	Are you trying to compile your driver application using Microsof
	Are you importing the correct versions of import libraries?
	Are you able to compile the matrixdriver example?
	Do you get the MATLAB:I18n:InconsistentLocale Warning?
	Do you get the MATLAB:I18n:InconsistentLocale Warning?
	Does the Failure Occur When Testing Your Application?
	Are you able to execute the application from MATLAB ?
	Does the application begin execution and result in MATLAB or oth
	Does the application emit a warning like " MATLAB file may be co
	Do you have multiple MATLAB versions installed?
	If you are testing a standalone executable or shared library and
	Do you receive an error message about a missing DLL?
	Are you receiving errors when trying to run the shared library a
	Does the Failure Occur When Deploying the Application to End Use
	Is the MCR installed?
	If running on UNIX or Mac, did you update the dynamic library pa
	Do you receive an error message about a missing DLL?
	Do you have write access to the directory the application is ins
	Are you executing a newer version of your application?

	mbuild
	MATLAB Compiler
	Deployed Applications

	Limitations and Restrictions
	Limitations About What May Be Compiled
	Compiling MATLAB and Toolboxes
	Fixing Callback Problems: Missing Functions
	Symptom
	Workaround

	Finding Missing Functions in an M-File
	Suppressing Warnings on the UNIX System
	Cannot Use Graphics with the -nojvm Option
	Cannot Create the Output File
	No M-File Help for Compiled Functions
	No MCR Versioning on Mac OS X
	Older Neural Networks Not Deployable with MATLAB Compiler
	Restrictions on Calling PRINTDLG with Multiple Arguments in Comp
	Compiling a Function with WHICH Does Not Search Current Working

	Unsupported Functions

	Reference Information
	Directories Required for Development and Testing
	Overview
	Path for Java Development on All Platforms
	Path Modifications Required for Accessibility
	Windows Settings for Development and Testing
	UNIX Settings for Development and Testing

	Directories Required for Run-Time Deployment
	General Path Guidelines
	Path for Java Applications on All Platforms
	Windows Path for Run-Time Deployment
	UNIX Paths for Run-Time Deployment
	Linux
	Linux x86-64
	Solaris 64
	Intel Mac (Maci)
	Intel Mac (Maci64)

	MATLAB Compiler Licensing
	Using MATLAB Compiler Licenses for Development
	Running MATLAB Compiler in MATLAB Mode
	Running MATLAB Compiler in Standalone Mode

	Using MCR Installer Command Line Options
	Overview
	Displaying MCR Installer Location and Related Information
	Accessing MCR Installer Command Line Options on Windows Systems
	Example: Performing a Silent Installation
	Example: Blocking the Command Prompt
	Example: Requesting a Verbose Log of the Install Process

	Accessing MCR Installer Command Line Options on UNIX and Linux S
	Uninstalling the MCR on UNIX Systems
	Example: Extracting the Jar File from the MCR Installer
	Example: Performing a Noninteractive (Silent) Installation of th

	Function Reference
	Pragmas
	Command-Line Tools
	API Functions

	Functions — Alphabetical List
	MATLAB Compiler Quick Reference
	Common Uses of MATLAB Compiler
	Create a Standalone Application
	Example 1
	Example 2
	Example 3

	Create a Library
	Example 1
	Example 2

	mcc

	Error and Warning Messages
	About Error and Warning Messages
	Compile-Time Errors
	Warning Messages
	depfun Errors
	About depfun Errors
	MCR/Dispatcher Errors
	XML Parser Errors
	depfun-Produced Errors

	C++ Utility Library Reference
	Primitive Types
	Utility Classes
	mwString Class
	About mwString
	Constructors
	Methods
	Operators

	mwException Class
	About mwException
	Constructors
	Methods
	Operators

	mwException Class Functions
	mwArray Class
	About mwArray
	Constructors
	Methods
	Operators
	Static Methods

	mwArray Class Functions

	Index

	tables
	Application Deployment Roles, Tasks, and References
	Key Tasks for the MATLAB Programmer
	Key Tasks for the C or C++ Programmer
	Windows Operating System
	UNIX Operating System
	MemShieldStarter Options
	-m Macro
	List of Unsupported Functions
	Frequently Used MCR Installation Options on Windows Systems
	Frequently Used MCR Installer Options on UNIX or Linux Systems

